Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 78271 by msup trace by abdo last updated on 15/Jan/20

calculate A_θ  =∫_0 ^(π/2)   (dx/(2+cosθ sinx))  −π<θ<π

calculateAθ=0π2dx2+cosθsinxπ<θ<π

Commented by mathmax by abdo last updated on 19/Jan/20

 A(θ)=∫_0 ^(π/2)  (dx/(2 +cosθ sinx)) ⇒A(θ)=_(tan((x/2))=t)   ∫_0 ^(1 )  ((2dt)/((1+t^2 )(2+cosθ((2t)/(1+t^2 )))))  =∫_0 ^1  ((2dt)/(2+2t^2 +2t cosθ)) =∫_0 ^1  (dt/(t^2  +t cosθ +1)) =∫_0 ^1  (dt/(t^2  +2t((cosθ)/2) +((cos^2 θ)/4) +1−((cos^2 θ)/4)))  =∫_0 ^1  (dt/((t+((cosθ)/2))^2  +((4−cos^2 θ)/4))) =_(t+((cosθ)/2)=((√(4−cos^2 θ))/2)u ⇒u=((2t+cosθ)/(√(4−cos^2 θ))))   =∫_((cosθ)/(√(4−cos^2 θ))) ^((2+cosθ)/(√(4−cos^2 θ)))      (1/(((4−cos^2 θ)/4)(1+u^2 )))×((√(4−cos^2 θ))/2)du  =2 ∫_((cosθ)/(√(4−cos^2 θ))) ^((2+cosθ)/(√(4−cos^2 θ)))     (du/(1+u^2 )) =2 [arctan(u)]_((cosθ)/(√(4−cos^2 θ))) ^((2+cosθ)/(√(4−cos^2 θ)))   =2{ arctan(((2+cosθ)/(√(4−cos^2 θ))))−arctan(((cosθ)/(√(4−cos^2 θ))))}.

A(θ)=0π2dx2+cosθsinxA(θ)=tan(x2)=t012dt(1+t2)(2+cosθ2t1+t2)=012dt2+2t2+2tcosθ=01dtt2+tcosθ+1=01dtt2+2tcosθ2+cos2θ4+1cos2θ4=01dt(t+cosθ2)2+4cos2θ4=t+cosθ2=4cos2θ2uu=2t+cosθ4cos2θ=cosθ4cos2θ2+cosθ4cos2θ14cos2θ4(1+u2)×4cos2θ2du=2cosθ4cos2θ2+cosθ4cos2θdu1+u2=2[arctan(u)]cosθ4cos2θ2+cosθ4cos2θ=2{arctan(2+cosθ4cos2θ)arctan(cosθ4cos2θ)}.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com