All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 78271 by msup trace by abdo last updated on 15/Jan/20
calculateAθ=∫0π2dx2+cosθsinx−π<θ<π
Commented by mathmax by abdo last updated on 19/Jan/20
A(θ)=∫0π2dx2+cosθsinx⇒A(θ)=tan(x2)=t∫012dt(1+t2)(2+cosθ2t1+t2)=∫012dt2+2t2+2tcosθ=∫01dtt2+tcosθ+1=∫01dtt2+2tcosθ2+cos2θ4+1−cos2θ4=∫01dt(t+cosθ2)2+4−cos2θ4=t+cosθ2=4−cos2θ2u⇒u=2t+cosθ4−cos2θ=∫cosθ4−cos2θ2+cosθ4−cos2θ14−cos2θ4(1+u2)×4−cos2θ2du=2∫cosθ4−cos2θ2+cosθ4−cos2θdu1+u2=2[arctan(u)]cosθ4−cos2θ2+cosθ4−cos2θ=2{arctan(2+cosθ4−cos2θ)−arctan(cosθ4−cos2θ)}.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com