Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 50421 by Abdo msup. last updated on 16/Dec/18

calculate A =∫_0 ^(π/3)     (du/((1+cos^2 u)^3 ))

calculateA=0π3du(1+cos2u)3

Commented by maxmathsup by imad last updated on 18/Dec/18

 we have 1+cos^2 u =1+(1/(1+tan^2 u)) =((2+tan^2 u)/(1+tan^2 u)) ⇒  A =∫_0 ^(π/3)    (du/((((2+tan^2 u)/(1+tan^2 u)))^3 )) =∫_0 ^(π/3)   (((1+tan^2 u)^3 )/((2+tan^2 u)^3 ))  changement tan(u)=x give  A =∫_0 ^(√3)    (((1+x^2 )^3 )/((2+x^2 )^3 )) (dx/((1+x^2 ))) =∫_0 ^(√3)    ((x^4  +2x^2  +1)/((x^2  +2)^3 )) dx let decompose  F(x) =((x^4  +2x^2  +1)/((x^2  +2)^3 ))  F(x)=G(u) =((u^2  +2u +1)/((u+2)^3 )) =(a/(u+2)) +(b/((u+2)^2 )) +(c/((u+2)^3 ))  c =lim_(u→−2) (u+2)^2 G(u) =1  lim_(u→+∞) uG(u) =1 =a ⇒G(u) =(1/(u+2)) +(b/((u+2)^2 )) +(1/((u+2)^3 ))  G(−1) =0 =1 +b +1 =b+2 ⇒b =−2 ⇒G(u)=(1/(u+2)) −(2/((u+2)^2 )) +(1/((u+2)^3 )) ⇒  F(x) = (1/(x^2  +2)) −(2/((x^2  +2)^2 )) +(1/((x^2  +2)^3 )) ⇒  ∫_0 ^(√3)  F(x)dx =∫_0 ^(√3)   (dx/(x^2  +2)) −2 ∫_0 ^(√3)   (dx/((x^2  +2)^2 )) +∫_0 ^(√3)   (dx/((x^2  +2)^3 ))  ∫_0 ^(√3)    (dx/(x^2  +2)) =_(x=(√2)u)     ∫_0 ^((√3)/(√2))    (((√2)du)/(2(1+u^2 ))) =(1/(√2)) arctan(((√3)/(√2))).  ∫_0 ^(√3)   (dx/((x^2  +2)^2 )) =_(x=(√2)tanθ)     ∫_0 ^(arctan(((√3)/(√2))))     (((√2)(1+tan^2 θ)dθ)/(4(1+tan^2 θ)^2 ))  =((√2)/4)∫_0 ^(arctan(((√3)/(√2))))     cos^2 θ dθ =((√2)/4)  ∫_0 ^(arctan(((√3)/(√2)))) ((1+cos(2θ))/2) dθ  =((√2)/8) arctan(((√3)/(√2))) +((√2)/(16)) [sin(2θ)]_0 ^(arctan(((√3)/(√2))))   =((√2)/8) arctan(((√3)/(√2))) +((√2)/(16)) sin(2arctan(((√3)/(√2)))).   ...be continued...

wehave1+cos2u=1+11+tan2u=2+tan2u1+tan2uA=0π3du(2+tan2u1+tan2u)3=0π3(1+tan2u)3(2+tan2u)3changementtan(u)=xgiveA=03(1+x2)3(2+x2)3dx(1+x2)=03x4+2x2+1(x2+2)3dxletdecomposeF(x)=x4+2x2+1(x2+2)3F(x)=G(u)=u2+2u+1(u+2)3=au+2+b(u+2)2+c(u+2)3c=limu2(u+2)2G(u)=1limu+uG(u)=1=aG(u)=1u+2+b(u+2)2+1(u+2)3G(1)=0=1+b+1=b+2b=2G(u)=1u+22(u+2)2+1(u+2)3F(x)=1x2+22(x2+2)2+1(x2+2)303F(x)dx=03dxx2+2203dx(x2+2)2+03dx(x2+2)303dxx2+2=x=2u0322du2(1+u2)=12arctan(32).03dx(x2+2)2=x=2tanθ0arctan(32)2(1+tan2θ)dθ4(1+tan2θ)2=240arctan(32)cos2θdθ=240arctan(32)1+cos(2θ)2dθ=28arctan(32)+216[sin(2θ)]0arctan(32)=28arctan(32)+216sin(2arctan(32))....becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com