All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 50421 by Abdo msup. last updated on 16/Dec/18
calculateA=∫0π3du(1+cos2u)3
Commented by maxmathsup by imad last updated on 18/Dec/18
wehave1+cos2u=1+11+tan2u=2+tan2u1+tan2u⇒A=∫0π3du(2+tan2u1+tan2u)3=∫0π3(1+tan2u)3(2+tan2u)3changementtan(u)=xgiveA=∫03(1+x2)3(2+x2)3dx(1+x2)=∫03x4+2x2+1(x2+2)3dxletdecomposeF(x)=x4+2x2+1(x2+2)3F(x)=G(u)=u2+2u+1(u+2)3=au+2+b(u+2)2+c(u+2)3c=limu→−2(u+2)2G(u)=1limu→+∞uG(u)=1=a⇒G(u)=1u+2+b(u+2)2+1(u+2)3G(−1)=0=1+b+1=b+2⇒b=−2⇒G(u)=1u+2−2(u+2)2+1(u+2)3⇒F(x)=1x2+2−2(x2+2)2+1(x2+2)3⇒∫03F(x)dx=∫03dxx2+2−2∫03dx(x2+2)2+∫03dx(x2+2)3∫03dxx2+2=x=2u∫0322du2(1+u2)=12arctan(32).∫03dx(x2+2)2=x=2tanθ∫0arctan(32)2(1+tan2θ)dθ4(1+tan2θ)2=24∫0arctan(32)cos2θdθ=24∫0arctan(32)1+cos(2θ)2dθ=28arctan(32)+216[sin(2θ)]0arctan(32)=28arctan(32)+216sin(2arctan(32))....becontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com