All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 37891 by abdo mathsup 649 cc last updated on 19/Jun/18
calculateBn=∑k=0n(−1)k(2k2+1)intermsofn.
Commented by prof Abdo imad last updated on 24/Jun/18
Bn=2∑k=0nk2(−1)k+∑k=0n(−1)kletp(x)=∑k=0nxkwithx≠1p′(x)=∑k=1nkxk−1⇒xp′(x)=∑k=1nkxk⇒∑k=1nk2xk−1=p′(x)+xp″(x)⇒∑k=1nk2xk=xp′(x)+x2p″(x)butp(x)=xn+1−1x−1⇒p′(x)=nxn+1−(n+1)xn+1(x−1)2p″(x)=(n(n+1)xn−n(n+1)xn−1)(x−1)2−2(x−1)(nxn+1−(n+1)xn+1)(x−1)4=(x−1)n(n+1)(xn−xn−1)−2(nxn+1−(n+1)xn+1)(x−1)3∑k=1nk2(−1)k=−p′(−1)+p″(−1)=−n(−1)n+1−(n+1)(−1)n+14+−2n(n+1)((−1)n−(−1)n−1)−2{n(−1)n+1−(n+1)(−1)n+1}−8also∑k=0n(−1)k=1−(−1)n+12sothevalueofSisdetermined.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com