Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 37299 by math khazana by abdo last updated on 11/Jun/18

calculate  ∫_C    ((9(z^2  +2))/(z(z+1)^3 (z−2)))dz  with  C is the  circle C ={z∈C/ ∣z∣ =3}

calculateC9(z2+2)z(z+1)3(z2)dzwithCisthecircleC={zC/z=3}

Commented by math khazana by abdo last updated on 17/Jun/18

let consider the complex function  ϕ(z)= ((9(z^2  +2))/(z(z+1)^3 (z−2))) the poles of ϕ are  0, −1,2  (all are at interior of circle C)  ∫_C ϕ−z)dz =2iπ { Res(ϕ,0)+Res(ϕ,−1)+Res(ϕ,2)  Res(ϕ,0)=lim_(z→0) zϕ(z)= ((18)/(−2)) =−9  Res(ϕ,2) =lim_(z→2) (z−2)ϕ(z)  = ((36)/(2.27)) =((18)/(27))= ((2.9)/(3.9)) =(2/3)  Res(ϕ,−1) =lim_(z→−1)  (1/((3−1)!)){(z+1)^3 ϕ(z)}^((2))   =lim_(z→−1)  (9/2){ ((z^2  +2)/(z^2  −2z))}^((2))   =lim_(z→−1) (9/2){((2z(z^2 −2z) −(2z−2)(z^2 +2))/((z^2  −2z)^2 ))}^((1))   =lim_(z→−1) (9/2){ ((2z^3  −4z^2  −2z^3  −4z +2z^2  +4)/((z^2  −2z)^2 ))}^((1))   =lim_(z→−1)  (9/2){ ((−2z^2  −4z +4)/((z^2  −2z)^2 ))}^((1))   =lim_(z→−1)  (9/2){ (((−4z−4)(z^2  −2z)^2  −2(2z−2)(z^2  −2z)(−2z^2 −4z +4))/((z^2  −2z)^4 ))}  =lim_(z→−1)  (9/2){ (((−4z−4)(z^2  −2z) −4(z−1)(−2z^2 −4z +4))/((z^2 −2z)^3 ))}  =(9/2)  ((8(6))/(27)) = ((8.6)/(2.3)) = 4.2=8  ∫_C ϕ(z)dz=2iπ{−9  +(2/3) +8}  =2iπ(−1+(2/3))=2iπ(−(1/3))=−((2iπ)/3)

letconsiderthecomplexfunctionφ(z)=9(z2+2)z(z+1)3(z2)thepolesofφare0,1,2(allareatinteriorofcircleC)Cφz)dz=2iπ{Res(φ,0)+Res(φ,1)+Res(φ,2)Res(φ,0)=limz0zφ(z)=182=9Res(φ,2)=limz2(z2)φ(z)=362.27=1827=2.93.9=23Res(φ,1)=limz11(31)!{(z+1)3φ(z)}(2)=limz192{z2+2z22z}(2)=limz192{2z(z22z)(2z2)(z2+2)(z22z)2}(1)=limz192{2z34z22z34z+2z2+4(z22z)2}(1)=limz192{2z24z+4(z22z)2}(1)=limz192{(4z4)(z22z)22(2z2)(z22z)(2z24z+4)(z22z)4}=limz192{(4z4)(z22z)4(z1)(2z24z+4)(z22z)3}=928(6)27=8.62.3=4.2=8Cφ(z)dz=2iπ{9+23+8}=2iπ(1+23)=2iπ(13)=2iπ3

Terms of Service

Privacy Policy

Contact: info@tinkutara.com