All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 37299 by math khazana by abdo last updated on 11/Jun/18
calculate∫C9(z2+2)z(z+1)3(z−2)dzwithCisthecircleC={z∈C/∣z∣=3}
Commented by math khazana by abdo last updated on 17/Jun/18
letconsiderthecomplexfunctionφ(z)=9(z2+2)z(z+1)3(z−2)thepolesofφare0,−1,2(allareatinteriorofcircleC)∫Cφ−z)dz=2iπ{Res(φ,0)+Res(φ,−1)+Res(φ,2)Res(φ,0)=limz→0zφ(z)=18−2=−9Res(φ,2)=limz→2(z−2)φ(z)=362.27=1827=2.93.9=23Res(φ,−1)=limz→−11(3−1)!{(z+1)3φ(z)}(2)=limz→−192{z2+2z2−2z}(2)=limz→−192{2z(z2−2z)−(2z−2)(z2+2)(z2−2z)2}(1)=limz→−192{2z3−4z2−2z3−4z+2z2+4(z2−2z)2}(1)=limz→−192{−2z2−4z+4(z2−2z)2}(1)=limz→−192{(−4z−4)(z2−2z)2−2(2z−2)(z2−2z)(−2z2−4z+4)(z2−2z)4}=limz→−192{(−4z−4)(z2−2z)−4(z−1)(−2z2−4z+4)(z2−2z)3}=928(6)27=8.62.3=4.2=8∫Cφ(z)dz=2iπ{−9+23+8}=2iπ(−1+23)=2iπ(−13)=−2iπ3
Terms of Service
Privacy Policy
Contact: info@tinkutara.com