All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 39389 by maxmathsup by imad last updated on 05/Jul/18
calculateF(x)=∫0∞dt1+(1+x(1+t2))2
Commented by prof Abdo imad last updated on 24/Jul/18
changementt=tanθgiveF(x)=∫0π2(1+tan2θ)1+{1+x(1+tan2θ)}2dθ=∫0π21cos2θ{1+xcos2θ}2dθ=∫0π2cos2θ{x+cos2θ}2dθ=∫0π2x+cos2θ−x(x+cos2θ)2dθ=∫0π2dθx+cos2θ−x∫0π2dθ(x+cos2θ)2but∫0π2dθx+cos2θ=∫0π2dθx+1+cos(2θ)2=∫0π22dθ2x+1+cos(2θ)=2θ=t∫0πdt2x+1+cos(t)=u=tan(t2)∫0∞12x+1+1−u21+u22du1+u2=∫0∞2du(2x+1)u2+1−u2=∫0∞2du2xu2+1ifx>0∫0∞2du1+2xu2=2xu=α∫0∞21+α2dα2x=2x.π2ifx<0∫0∞2du1+2xu2=∫0∞2du1−(−2xu)2=∫0∞2du(1−2xu)(1+2xu)=∫0∞{11−2xu+11+2xu}du=[ln∣1+2xu1−2xu∣]0+∞=0so∫0π2dθx+cos2θ=π22xifx>0∫0π2dθx+cos2θ=0ifx<0
letw(x)=∫0π2dθx+cos2θ⇒w′(x)=−∫0π2dθ(x+cos2θ)2⇒∫0π2dθ(x+cos2θ)2=−w′(x)soifx>0w(x)=π22x⇒w′(x)=π2(−12xx)=−π22xx⇒∫0π2dθ(x+cos2θ)2=π22xxandF(x)=π22x−xπ22xx=π22x−π22x=πx{22−122}=πx{242}=π22xifx<0w(x)=0⇒∫0π2dθ(x+cos2θ)2=0⇒F(x)=0because∫0π2dθx+cos2θ=0
Terms of Service
Privacy Policy
Contact: info@tinkutara.com