Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 39389 by maxmathsup by imad last updated on 05/Jul/18

calculate F(x) = ∫_0 ^∞       (dt/(1+(1+x(1+t^2 ))^2 ))

calculateF(x)=0dt1+(1+x(1+t2))2

Commented by prof Abdo imad last updated on 24/Jul/18

changement t=tanθ give  F(x) = ∫_0 ^(π/2)     (((1+tan^2 θ))/(1+{1+x(1+tan^2 θ)}^2 ))dθ  = ∫_0 ^(π/2)    (1/(cos^2 θ{1+(x/(cos^2 θ))}^2 ))dθ  = ∫_0 ^(π/2)   ((cos^2 θ)/({x +cos^2 θ}^2 ))dθ  =∫_0 ^(π/2)    ((x+cos^2 θ−x)/((x+cos^2 θ)^2 ))dθ  = ∫_0 ^(π/2)   (dθ/(x +cos^2 θ)) −x   ∫_0 ^(π/2)    (dθ/((x+cos^2 θ)^2 )) but  ∫_0 ^(π/2)    (dθ/(x+cos^2 θ)) = ∫_0 ^(π/2)    (dθ/(x+((1+cos(2θ))/2)))  = ∫_0 ^(π/2)    ((2dθ)/(2x+1+cos(2θ))) =_(2θ=t)   ∫_0 ^π     (dt/(2x+1+cos(t)))  =_(u=tan((t/2)))      ∫_0 ^∞      (1/(2x+1 +((1−u^2 )/(1+u^2 )))) ((2du)/(1+u^2 ))  = ∫_0 ^∞       ((2du)/((2x+1)u^2  +1−u^2 ))  = ∫_0 ^∞       ((2du)/(2xu^2  +1))  if x>0   ∫_0 ^∞   ((2du)/(1+2xu^2 )) =_((√(2x))u=α)   ∫_0 ^∞   (2/(1+α^2 )) (dα/(√(2x)))  =((√2)/(√x)) .(π/2)  if x<0  ∫_0 ^∞    ((2du)/(1+2xu^2 ))  = ∫_0 ^∞   ((2du)/(1−((√(−2x))u)^2 ))  =∫_0 ^∞      ((2du)/((1−(√(2x))u)(1+(√(2x))u)))  = ∫_0 ^∞     { (1/(1−(√(2x))u)) +(1/(1+(√(2x))u))}du  =[ln∣((1+(√(2x))u)/(1−(√(2x))u))∣]_0 ^(+∞)  =0  so  ∫_0 ^(π/2)    (dθ/(x+cos^2 θ)) =((π(√2))/(√(2x))) if x>0  ∫_0 ^(π/2)   (dθ/(x+cos^2 θ)) =0 if x<0

changementt=tanθgiveF(x)=0π2(1+tan2θ)1+{1+x(1+tan2θ)}2dθ=0π21cos2θ{1+xcos2θ}2dθ=0π2cos2θ{x+cos2θ}2dθ=0π2x+cos2θx(x+cos2θ)2dθ=0π2dθx+cos2θx0π2dθ(x+cos2θ)2but0π2dθx+cos2θ=0π2dθx+1+cos(2θ)2=0π22dθ2x+1+cos(2θ)=2θ=t0πdt2x+1+cos(t)=u=tan(t2)012x+1+1u21+u22du1+u2=02du(2x+1)u2+1u2=02du2xu2+1ifx>002du1+2xu2=2xu=α021+α2dα2x=2x.π2ifx<002du1+2xu2=02du1(2xu)2=02du(12xu)(1+2xu)=0{112xu+11+2xu}du=[ln1+2xu12xu]0+=0so0π2dθx+cos2θ=π22xifx>00π2dθx+cos2θ=0ifx<0

Commented by prof Abdo imad last updated on 24/Jul/18

let w(x)= ∫_0 ^(π/2)    (dθ/(x+cos^2 θ)) ⇒  w^′ (x) =−∫_0 ^(π/2)     (dθ/((x +cos^2 θ)^2 )) ⇒  ∫_0 ^(π/2)    (dθ/((x+cos^2 θ)^2 )) =−w^′ (x) so  if x>0 w(x)=((π(√2))/(2(√x))) ⇒w^′ (x)=(π/(√2)) (−(1/(2x(√x))))  =−(π/(2(√2)x(√x))) ⇒ ∫_0 ^(π/2)     (dθ/((x+cos^2 θ)^2 )) = (π/(2(√2)x(√x)))  and F(x)=((π(√2))/(2(√x))) −x (π/(2(√2)x(√x)))  =((π(√2))/(2(√x))) −(π/(2(√2)(√x))) =(π/(√x)){((√2)/2) −(1/(2(√2)))}=(π/(√x)){(2/(4(√2)))}  = (π/(2(√(2x))))  if x<0  w(x)=0 ⇒ ∫_0 ^(π/2)    (dθ/((x+cos^2 θ)^2 )) =0 ⇒  F(x) = 0  because ∫_0 ^(π/2)   (dθ/(x+cos^2 θ)) =0

letw(x)=0π2dθx+cos2θw(x)=0π2dθ(x+cos2θ)20π2dθ(x+cos2θ)2=w(x)soifx>0w(x)=π22xw(x)=π2(12xx)=π22xx0π2dθ(x+cos2θ)2=π22xxandF(x)=π22xxπ22xx=π22xπ22x=πx{22122}=πx{242}=π22xifx<0w(x)=00π2dθ(x+cos2θ)2=0F(x)=0because0π2dθx+cos2θ=0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com