All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 35684 by prof Abdo imad last updated on 22/May/18
calculateI=∫01e2tln(1+et)dt
Commented by prof Abdo imad last updated on 22/May/18
letputI=∫01e2tln(1+et)dt.changementet=xgiveI=∫1ex2ln(1+x)dxx=∫1exln(1+x)dx.bypartswegetI=[x22ln(1+x)]1e−∫1ex22dx1+x=e22ln(1+e)−12ln(2)−12∫1ex21+xdx∫1ex2x+1dx=∫1ex2−1+1x+1dx=∫1e(x−1)dx+∫1edxx+1=[x22−x]1e+[ln(x+1)]1e=e22−e−12+1+ln(1+e)−ln(2)⇒I=e22ln(1+e)−12ln(2)−14e2+12e−14+ln(1+e)−ln(2)={1+e22}ln(1+e)−32ln(2)−e24+e2−14.
Answered by tanmay.chaudhury50@gmail.com last updated on 22/May/18
=∫01e2t(et−e2t2+e3t3−e4t4+...)dt=∫01e3t−e4t2+e5t3−e6t4+...dt=∣e3t3−e4t2×4+e5t3×5−e6t4×6+....∣01=(e33−e42×4+e53×5−e64×6...)−(13−12×4+13×5−14×6+....)lets1=sumtotaloffirsts2=sumtotalofsecondTn=(−1)n−1{1n×(n+2)}generaltermfors2Tn=12×(−1)n−1×{1n−1n+2}T1=12×1×{11−13}T2=12×1×{14−12}T3=12×1×{13−15}.....................addingweget12×1×{1−12}othertermscancelledsos2=12×12=14contdtofinds1Tn=(−1)n−1×{en+2n×(n+2)}=(−1)n−1×en+2×12×(1n−1n+2)contd
Terms of Service
Privacy Policy
Contact: info@tinkutara.com