Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 35684 by prof Abdo imad last updated on 22/May/18

calculate I  = ∫_0 ^1   e^(2t)  ln(1+e^t )dt

calculateI=01e2tln(1+et)dt

Commented by prof Abdo imad last updated on 22/May/18

let put I = ∫_0 ^1   e^(2t)  ln(1+e^t )dt .changement  e^t  =x give I = ∫_1 ^e    x^2 ln(1+x)(dx/x)  = ∫_1 ^e  xln(1+x)dx   .by parts we get  I = [ (x^2 /2)ln(1+x)]_1 ^e   −∫_1 ^e  (x^2 /2)  (dx/(1+x))  =(e^2 /2)ln(1+e) −(1/2)ln(2) −(1/2) ∫_1 ^e   (x^2 /(1+x))dx  ∫_1 ^e   (x^2 /(x+1))dx = ∫_1 ^e   ((x^2  −1 +1)/(x+1))dx  = ∫_1 ^e   (x−1)dx  + ∫_1 ^e    (dx/(x+1))  =[ (x^2 /2) −x]_1 ^e   + [ln(x+1)]_1 ^e   =(e^2 /2) −e −(1/2) +1 +ln(1+e) −ln(2) ⇒  I  = (e^2 /2)ln(1+e) −(1/2)ln(2)−(1/4)e^2  +(1/2)e −(1/4)  +ln(1+e) −ln(2)  ={ 1+(e^2 /2)}ln(1+e) −(3/2)ln(2) −(e^2 /4) +(e/2)−(1/4).

letputI=01e2tln(1+et)dt.changementet=xgiveI=1ex2ln(1+x)dxx=1exln(1+x)dx.bypartswegetI=[x22ln(1+x)]1e1ex22dx1+x=e22ln(1+e)12ln(2)121ex21+xdx1ex2x+1dx=1ex21+1x+1dx=1e(x1)dx+1edxx+1=[x22x]1e+[ln(x+1)]1e=e22e12+1+ln(1+e)ln(2)I=e22ln(1+e)12ln(2)14e2+12e14+ln(1+e)ln(2)={1+e22}ln(1+e)32ln(2)e24+e214.

Answered by tanmay.chaudhury50@gmail.com last updated on 22/May/18

=∫_0 ^1 e^(2t) (e^t −(e^(2t) /2)+(e^(3t) /3)−((e^(4t)  )/4)+...)dt  =∫_0 ^1 e^(3t) −(e^(4t) /2)+(e^(5t) /3)−(e^(6t_ ) /4)+...   dt  =∣(e^(3t) /3)−(e^(4t) /(2×4))+(e^(5t) /(3×5))−(e^(6t) /(4×6))+....∣_0 ^1   =((e^3 /3)−(e^4 /(2×4))+(e^5 /(3×5))−(e^6 /(4×6))...)−( (1/3)−(1/(2×4))+(1/(3×5))  −(1/(4×6))+....)  let s_1 =sum total of first      s_(2 ) =sum total of second  T_n =(−1)^(n−1) {(1/(n×(n+2)))}  general term for s_2   T_n =(1/2)×(−1)^(n−1) ×{(1/n)−(1/(n+2))}  T_1 =(1/2)×1×{(1/1)−(1/3)}  T_2 =(1/2)×1×{(1/4)−(1/2)}  T_3 =(1/2)×1×{(1/3)−(1/5)}  ..........  ...........  adding we get (1/2)×1×{1−(1/2)}  other terms  cancelled  so  s_2 =(1/2)×(1/2)=(1/4)  contd to find s_1   T_n =(−1)^(n−1) ×{(e^(n+2) /(n×(n+2)))}  =(−1)^(n−1) ×e^(n+2) ×(1/2)×((1/n)−(1/(n+2)))  contd

=01e2t(ete2t2+e3t3e4t4+...)dt=01e3te4t2+e5t3e6t4+...dt=∣e3t3e4t2×4+e5t3×5e6t4×6+....01=(e33e42×4+e53×5e64×6...)(1312×4+13×514×6+....)lets1=sumtotaloffirsts2=sumtotalofsecondTn=(1)n1{1n×(n+2)}generaltermfors2Tn=12×(1)n1×{1n1n+2}T1=12×1×{1113}T2=12×1×{1412}T3=12×1×{1315}.....................addingweget12×1×{112}othertermscancelledsos2=12×12=14contdtofinds1Tn=(1)n1×{en+2n×(n+2)}=(1)n1×en+2×12×(1n1n+2)contd

Terms of Service

Privacy Policy

Contact: info@tinkutara.com