Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 36415 by abdo.msup.com last updated on 01/Jun/18

calculate I = ∫_0 ^(π/2) (x^3  +x)cos^2 xdx and  J = ∫_0 ^(π/2)   (x^3  +x)sin^2 xdx  cslculate I and J .

calculateI=0π2(x3+x)cos2xdxandJ=0π2(x3+x)sin2xdxcslculateIandJ.

Commented by abdo.msup.com last updated on 04/Jun/18

we have I  +J = ∫_0 ^(π/2)  (x^3  +x)dx  =[(x^4 /4) +(x^2 /2)]_0 ^(π/2)  = (π^4 /(4.2^4 )) +(π^2 /(2.2^2 )) =(π^4 /(64)) +(π^2 /8)  also we have I −J = ∫_0 ^(π/2)  (x^3  +x)cos(2x)dx  =_(2x=t)   ∫_0 ^π  { ((t/2))^3  +(t/2)}cos(t) (dt/2)  =(1/2) ∫_0 ^π   { (t^3 /8) +(t/2)}cos(t)dt  = (1/(16)) ∫_0 ^π  { t^3  +4t)cos(2t)dt  by parts  ∫_0 ^π  { t^3  +4t)cos(2t)=[(1/2)(t^3  +4t)sin(2t)]_0 ^π   −(1/2)∫_0 ^π  {3t^2  +4}sin(2t)dt  =−(1/2){ [ −(1/2)(3t^2  +4)cos(2t)]_0 ^π   −∫_0 ^π −(1/2)(6t) cos(2t)dt  =(1/4){( 3π^2 +4)−4} −(3/2)∫_0 ^π  t cos(2t)dt  =(3/4)π^2   −(3/2){  [(1/2)t sin(2t)]_0 ^π  −∫_0 ^π  (1/2)sin(2t)dt}  =((3π^2 )/4)  +(3/4) ∫_0 ^π  sin(2t)dt  =((3π^2 )/4)  −(3/8)[cos(2t)]_0 ^π  = ((3π^2 )/4) so  I +J = (π^4 /(64)) +(π^2 /8)  and I −J = ((3π^2 )/4) ⇒  2I = (π^4 /(64)) + ((7π^2 )/8) ⇒ I = (π^4 /(128)) +((7π^2 )/(16))  and  2J =(π^4 /(64)) +(π^2 /8) −((3π^2 )/4) =(π^4 /(64)) −((5π^2 )/8) ⇒  J = (π^4 /(128)) −((5π^2 )/(16)) .

wehaveI+J=0π2(x3+x)dx=[x44+x22]0π2=π44.24+π22.22=π464+π28alsowehaveIJ=0π2(x3+x)cos(2x)dx=2x=t0π{(t2)3+t2}cos(t)dt2=120π{t38+t2}cos(t)dt=1160π{t3+4t)cos(2t)dtbyparts0π{t3+4t)cos(2t)=[12(t3+4t)sin(2t)]0π120π{3t2+4}sin(2t)dt=12{[12(3t2+4)cos(2t)]0π0π12(6t)cos(2t)dt=14{(3π2+4)4}320πtcos(2t)dt=34π232{[12tsin(2t)]0π0π12sin(2t)dt}=3π24+340πsin(2t)dt=3π2438[cos(2t)]0π=3π24soI+J=π464+π28andIJ=3π242I=π464+7π28I=π4128+7π216and2J=π464+π283π24=π4645π28J=π41285π216.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com