All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 36415 by abdo.msup.com last updated on 01/Jun/18
calculateI=∫0π2(x3+x)cos2xdxandJ=∫0π2(x3+x)sin2xdxcslculateIandJ.
Commented by abdo.msup.com last updated on 04/Jun/18
wehaveI+J=∫0π2(x3+x)dx=[x44+x22]0π2=π44.24+π22.22=π464+π28alsowehaveI−J=∫0π2(x3+x)cos(2x)dx=2x=t∫0π{(t2)3+t2}cos(t)dt2=12∫0π{t38+t2}cos(t)dt=116∫0π{t3+4t)cos(2t)dtbyparts∫0π{t3+4t)cos(2t)=[12(t3+4t)sin(2t)]0π−12∫0π{3t2+4}sin(2t)dt=−12{[−12(3t2+4)cos(2t)]0π−∫0π−12(6t)cos(2t)dt=14{(3π2+4)−4}−32∫0πtcos(2t)dt=34π2−32{[12tsin(2t)]0π−∫0π12sin(2t)dt}=3π24+34∫0πsin(2t)dt=3π24−38[cos(2t)]0π=3π24soI+J=π464+π28andI−J=3π24⇒2I=π464+7π28⇒I=π4128+7π216and2J=π464+π28−3π24=π464−5π28⇒J=π4128−5π216.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com