All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 209217 by mnjuly1970 last updated on 04/Jul/24
calculate:I=∫0∞tan−1(x)(1+x2)2dx=?
Answered by Berbere last updated on 04/Jul/24
tan−1(x)=u∫0π2ucos2(u)du=∫0π2u.(1+cos(2u)2)=14.π24+12[sin(2u)2u]0π2−14∫sin(2u)du=π216+18[cos(2u)]0π2=π216−14
Answered by lepuissantcedricjunior last updated on 05/Jul/24
i=∫0∞arctan(x)(1+x2)2dxposonsx=tant=>dx=(1+tan2t)dti=∫0π/2t1+tan2tdt=∫0π2tcos2(t)dt{u=tv′=cos2(t)=>{u′=1v=t2+sin2t4i=[t22+tsin2t4]0π2−∫0π2(t2+sin2t4)dt=π28−[t24−cos2t8]0π2=π28−π216−18−18=π216−14⇒i=∫0∞arctan(x)(1+x2)2dx=π216−14
Terms of Service
Privacy Policy
Contact: info@tinkutara.com