Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 209217 by mnjuly1970 last updated on 04/Jul/24

              calculate :                   I= ∫_(0 ) ^( ∞) (( tan^( −1) (x))/((1 + x^( 2) )^( 2) )) dx = ?

calculate:I=0tan1(x)(1+x2)2dx=?

Answered by Berbere last updated on 04/Jul/24

tan^(−1) (x)=u  ∫_0 ^(π/2) ucos^2 (u)du=∫_0 ^(π/2) u.(((1+cos(2u))/2))  =(1/4).(π^2 /4)+(1/2)[((sin(2u))/2)u]_0 ^(π/2) −(1/4)∫sin(2u)du  =(π^2 /(16))+(1/8)[cos(2u)]_0 ^(π/2) =(π^2 /(16))−(1/4)

tan1(x)=u0π2ucos2(u)du=0π2u.(1+cos(2u)2)=14.π24+12[sin(2u)2u]0π214sin(2u)du=π216+18[cos(2u)]0π2=π21614

Answered by lepuissantcedricjunior last updated on 05/Jul/24

i=∫_0 ^∞ ((arctan(x))/((1+x^2 )^2 ))dx  posons x=tant=>dx=(1+tan^2 t)dt  i=∫_0 ^(𝛑/2) (t/(1+tan^2 t))dt=∫_0 ^(π/2) tcos^2 (t)dt   { ((u=t)),((v′=cos^2 (t))) :}=> { ((u′=1)),((v=(t/2)+((sin2t)/4))) :}  i=[(t^2 /2)+((tsin2t)/4)]_0 ^(𝛑/2) −∫_0 ^(𝛑/2) ((t/2)+((sin2t)/4))dt     =(𝛑^2 /8)−[(t^2 /4)−((cos2t)/8)]_0 ^(𝛑/2)      =(𝛑^2 /8)−(𝛑^2 /(16))−(1/8)−(1/8)=(𝛑^2 /(16))−(1/4)  ⇒i=∫_0 ^∞ ((arctan(x))/((1+x^2 )^2 ))dx=(𝛑^2 /(16))−(1/4)

i=0arctan(x)(1+x2)2dxposonsx=tant=>dx=(1+tan2t)dti=0π/2t1+tan2tdt=0π2tcos2(t)dt{u=tv=cos2(t)=>{u=1v=t2+sin2t4i=[t22+tsin2t4]0π20π2(t2+sin2t4)dt=π28[t24cos2t8]0π2=π28π2161818=π21614i=0arctan(x)(1+x2)2dx=π21614

Terms of Service

Privacy Policy

Contact: info@tinkutara.com