All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 66468 by mathmax by abdo last updated on 15/Aug/19
calculateIn=∫0∞dx(xn+3)2withn>1
Commented by mathmax by abdo last updated on 16/Aug/19
letf(a)=∫0∞dxa+xnwitha>0⇒f(a)=1a∫0∞dx(1+xna)letusethechangementxna=un⇒xn=aun⇒x=a1nu⇒f(a)=1a∫0∞11+una1ndu=a1n−1∫0∞du1+unchangementu=α1ngive∫0∞11+α1nα1n−1dα=1n∫0∞α1n−11+αdα=1nπsin(πn)⇒f(a)=a1n−1×πnsin(πn)=πa1n−1nsin(πn)andwehavef′(a)=−∫0∞dx(a+xn)2⇒∫0∞dx(a+xn)2=−f′(a)f′(a)=π(1n−1)a1n−2nsin(πn)⇒∫0∞dx(a+xn)2=π(1−1n)a1n−2nsin(πn)a=3⇒∫0∞dx(3+xn)2=π(1−1n)31n−2nsin(πn)=In
Terms of Service
Privacy Policy
Contact: info@tinkutara.com