All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 36936 by maxmathsup by imad last updated on 07/Jun/18
calculateIn=∫0πdx1+cos2(nx)
Commented by math khazana by abdo last updated on 02/Aug/18
wehaveIn=∫0πdx1+1+cos(2nx)2=∫0π2dx3+cos(2nx)=2nx=t∫02nπ23+costdt2n=1n∫02nπdt3+cost⇒nIn=∑k=0n−1∫2kπ2(k+1)πdt3+cost=t=2kπ+x∑k=0n−1∫02πdx3+cos(x+2kπ)=n∫02πdx3+cosx⇒In=∫02πdx3+cosx∀n⩾1andIo=πchangementeix=zgiveIn=∫∣z∣=113+z+z−12dziz=∫∣z∣=12dziz{6+z+z−1}=∫∣z∣=1−2idz6z+z2+1letφ(z)=−2iz2+6z+1polesofφ?Δ′=32−1=8⇒z1=−3+22andz2=−3−22∣z1∣−1=3−22−1=2−22<0⇒∣z1∣<1∣z2∣−1=3+22−1=2+22>1⇒∫∣z∣=1φ(z)dz=2iπRes(φ,z1)butφ(z)=−2i(z−z1)(z−z2)⇒Res(φ,z1)=−2iz1−z2=−2i42=−i22⇒∫∣z∣=1φ(z)dz=2iπ.−i22=π2⇒In=π2withn⩾1.
I0=π2
Terms of Service
Privacy Policy
Contact: info@tinkutara.com