Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 36432 by prof Abdo imad last updated on 02/Jun/18

calculate  I = ∫_(−∞) ^(+∞)    ((x+1)/((x^2  +1)^2 ))dx .

calculateI=+x+1(x2+1)2dx.

Commented by abdo mathsup 649 cc last updated on 03/Jun/18

let introduce the complex function  ϕ(z) = ((z+1)/((z^2  +1)^2 ))  we have   ϕ(z) = ((z+1)/( (z−i)^2 (z+i)^2 )) so the poles of ϕ are i and−i  (doubles)   ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,i)  Res(ϕ,i) =lim_(z→i) (1/((2−1)!)){ (z−i)^2 ϕ(z)}^′   =lim_(z→i)  { ((z+1)/((z+i)^2 ))}^′   = lim_(z→i)   (((z+i)^2  −2(z+i)(z+1))/((z+i)^4 ))  =lim_(z→i)  ((z+i −2z−2)/((z+i)^3 ))  =  ((−2)/((2i)^3 ))  = ((−2)/(−8i)) = (1/(4i))  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ (1/(4i)) = (π/2)  so  ★ I = (π/2) ★

letintroducethecomplexfunctionφ(z)=z+1(z2+1)2wehaveφ(z)=z+1(zi)2(z+i)2sothepolesofφareiandi(doubles)+φ(z)dz=2iπRes(φ,i)Res(φ,i)=limzi1(21)!{(zi)2φ(z)}=limzi{z+1(z+i)2}=limzi(z+i)22(z+i)(z+1)(z+i)4=limziz+i2z2(z+i)3=2(2i)3=28i=14i+φ(z)dz=2iπ14i=π2soI=π2

Answered by tanmay.chaudhury50@gmail.com last updated on 02/Jun/18

x=tan(θ  dx=sec^2 θdθ  ∫_((−Π)/2) ^(Π/2) (((tanθ +1)×sec^2 θ)/(sec^2 θ×sec^2 θ)) dθ  ∫_(−(Π/2)) ^(Π/2) { ((sinθ)/(cosθ))×cos^2 θ+cos^2 θ}dθ  ∫_(−(Π/2)) ^(Π/2) sinθd(sinθ)+∫_(−(Π/2)) ^(Π/2)  ((1+cos2θ)/2)dθ  =∣((sin^2 θ)/2)∣_(−(Π/2)) ^(Π/2)  +(1/2)∣θ∣_(−(Π/2)) ^(Π/2) +(1/2)×(1/2)∣sin2θ∣_(−(Π/2)) ^(Π/2)   =0+(1/2)(Π)+(1/4)×0  =(Π/2)

x=tan(θdx=sec2θdθΠ2Π2(tanθ+1)×sec2θsec2θ×sec2θdθΠ2Π2{sinθcosθ×cos2θ+cos2θ}dθΠ2Π2sinθd(sinθ)+Π2Π21+cos2θ2dθ=∣sin2θ2Π2Π2+12θΠ2Π2+12×12sin2θΠ2Π2=0+12(Π)+14×0=Π2

Commented by abdo mathsup 649 cc last updated on 03/Jun/18

correct answer sir Tanmay  thanks..

correctanswersirTanmaythanks..

Terms of Service

Privacy Policy

Contact: info@tinkutara.com