Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 51996 by maxmathsup by imad last updated on 01/Jan/19

calculate S_n =Σ_(k=0) ^(n−1)  sin((π/(4n)) +((kπ)/(2n)))

calculateSn=k=0n1sin(π4n+kπ2n)

Commented by Abdo msup. last updated on 19/Jan/19

we have S_n =Σ_(k=0) ^(n−1) sin((((2k+1)π)/(4n)))  =Im(Σ_(k=0) ^(n−1)  e^(i((((2k+1)π)/(4n)))) ) but   A_n =Σ_(k=0) ^(n−1)  e^(i(((2k+1)π)/(4n))) =e^(i(π/(4n)))  Σ_(k=0) ^(n−1)   (e^((iπ)/(2n)) )^k   =e^((iπ)/(4n))  ((1−(e^((iπ)/(2n)) )^n )/(1−e^((iπ)/(2n)) )) =e^((iπ)/(4n))  ((1−i)/(1−cos((π/(2n)))−isin((π/(2n)))))  =e^((iπ)/(4n))    (((√2)e^(−((iπ)/4)) )/(2sin^2 ((π/(4n)))−2isin((π/(4n)))cos((π/(4n)))))  =((√2)/2) e^((iπ)/(4n))  (e^(−((iπ)/4)) /(−isin((π/(4n)))(e^((iπ)/(4n)) )))   =i ((√2)/2) e^((iπ)/(4n))    ((e^(−((iπ)/4))  e^(−((iπ)/(4n))) )/(sin((π/(4n))))) =i((√2)/2)  (((1/(√2))−(i/(√2)))/(sin((π/(4n)))))  =(i/2) ((1−i)/(sin((π/(4n))))) =(1/2) ((i+1)/(sin((π/(4n))))) ⇒★ S_n =(1/(2sin((π/(4n))))) ★

wehaveSn=k=0n1sin((2k+1)π4n)=Im(k=0n1ei((2k+1)π4n))butAn=k=0n1ei(2k+1)π4n=eiπ4nk=0n1(eiπ2n)k=eiπ4n1(eiπ2n)n1eiπ2n=eiπ4n1i1cos(π2n)isin(π2n)=eiπ4n2eiπ42sin2(π4n)2isin(π4n)cos(π4n)=22eiπ4neiπ4isin(π4n)(eiπ4n)=i22eiπ4neiπ4eiπ4nsin(π4n)=i2212i2sin(π4n)=i21isin(π4n)=12i+1sin(π4n)Sn=12sin(π4n)

Answered by tanmay.chaudhury50@gmail.com last updated on 02/Jan/19

T_1 =sin((π/(4n)))=sin((π/(4n)))  T_2 =sin((π/(4n))+(π/(2n)))=sin(((3π)/(4n)))  T_3 =sin((π/(4n))+((2π)/(2n)))=sin(((5π)/(4n)))  T_4 =sin((π/(4n))+((3π)/(2n)))=sin(((7π)/(4n)))  ...  ....  T_n =sin((π/(4n))+(((n−1)π)/(2n)))=sin(((π+2(n−1)π)/(4n)))  now  2sin((π/(4n)))sin((π/(4n)))=cos0−cos(((2π)/(4n)))  2sin(((3π)/(4n)))sin((π/(4n)))=cos(((2π)/(4n)))−cos(((4π)/(4n)))  2sin(((5π)/(4n)))sin((π/(4n)))=cos(((4π)/(4n)))−cos(((6π)/(4n)))  ....  ....  2sin(((π+2(n−1)π)/(4n)))sin((π/(4n)))=cos(((2(n−1)π)/(4n)))−cos(((2nπ)/(4n)))  add them  2sin((π/(4n)))×S_n =cos0−cos(((2nπ)/(4n)))  2sin((π/(4n)))×S_n =1−cos((π/2))  S_n =(1/(2sin((π/(4n)))))

T1=sin(π4n)=sin(π4n)T2=sin(π4n+π2n)=sin(3π4n)T3=sin(π4n+2π2n)=sin(5π4n)T4=sin(π4n+3π2n)=sin(7π4n).......Tn=sin(π4n+(n1)π2n)=sin(π+2(n1)π4n)now2sin(π4n)sin(π4n)=cos0cos(2π4n)2sin(3π4n)sin(π4n)=cos(2π4n)cos(4π4n)2sin(5π4n)sin(π4n)=cos(4π4n)cos(6π4n)........2sin(π+2(n1)π4n)sin(π4n)=cos(2(n1)π4n)cos(2nπ4n)addthem2sin(π4n)×Sn=cos0cos(2nπ4n)2sin(π4n)×Sn=1cos(π2)Sn=12sin(π4n)

Commented by Abdo msup. last updated on 19/Jan/19

thanks sir Tanmay.

thankssirTanmay.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com