Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 35621 by abdo mathsup 649 cc last updated on 21/May/18

calculate   S(x) = Σ_(n=0) ^∞    (x^(3n) /(3n+1))  after finding  the radius of convergence .  2) find the value of     Σ_(n=0) ^∞    (1/((3n+1)8^n ))

calculateS(x)=n=0x3n3n+1afterfindingtheradiusofconvergence.2)findthevalueofn=01(3n+1)8n

Commented by abdo.msup.com last updated on 25/May/18

1) let u_n (x)= (x^(3n) /(3n+1))  if x≠0   ∣((u_(n+1) (x))/(u_n (x)))∣ = ∣ ((x^(3n+3) /(3n+4))/(x^(3n) /(3n+1)))∣ =((3n+1)/(3n+4)) ∣x∣^3   →∣x∣^3    so if ∣x∣<1  the serie converged  so R =1 let find S(x)  we have x S(x) = Σ_(n=0) ^∞  (x^(3n+1) /(3n+1)) =w(x)  w^′ (x)= Σ_(n=0) ^∞   x^(3n)   = (1/(1−x^3 )) ⇒  w(x) = ∫_0 ^x     (dt/(1−t^3 ))  +c   but c=w(0)=0  F(t) = (1/(1−t^3 )) = (1/((1−t)(t^2  +t +1)))  =(a/(1−t)) +((bt +c)/(t^2  +t +1))  a=lim_(t→1) (1−t)F(t) =(1/3)  F(t) = (1/(3(1−t))) +((bt +c)/(t^2  +t +1))  lim_(t→+∞) t F(t) = −(1/3) +b =0⇒b=(1/3)  F(t) = (1/(3(1−t))) +(((1/3)t +c)/(t^2  +t+1))  F(0) = (1/3) +c =1⇒c=1−(1/3) =(2/3)  so F(t)= (1/(3(1−t))) +(1/3) ((t+2)/(t^2  +t+1))  3w(x)=∫_0 ^x   (dt/(1−t)) + (1/2)∫_0 ^x  ((2t+1+3)/(t^2  +t+1))dt   =[−ln∣1−t∣]_0 ^x    +(1/2)[ln(t^2  +t+1)]_0 ^x   +(3/2) ∫_0 ^x    (dt/(t^2  +t+1))  =−ln∣1−x∣ +(1/2)ln(x^(2 )  +x+1)+(3/2) I  I = ∫_0 ^x     (dt/((t+(1/2))^2  +(3/4)))  =_(t +(1/2)=((√3)/2) u)    ∫_(1/(√3)) ^((2x+1)/(√3))      (1/((3/4)( 1+u^2 )))((√3)/2)du  = (4/3) ((√3)/2) [arctan(u)]_(1/(√3)) ^((2x+1)/(√3))   = (2/(√3)) { arctan(((2x+1)/(√3))) −arctan((1/(√3)))}  3w(x)=−ln∣1−x∣ +(1/2)ln(x^2  +x+1)  +(√3){arctan(((2x+1)/(√3))) −(π/6)} ⇒  w(x) =−(1/3)ln∣1−x∣ +(1/6)ln(x^2  +x+1)  + (1/(√3)){ arctan(((2x+1)/(√3))) −(π/6)}and  S(x)= ((w(x))/x)

1)letun(x)=x3n3n+1ifx0un+1(x)un(x)=x3n+33n+4x3n3n+1=3n+13n+4x3→∣x3soifx∣<1theserieconvergedsoR=1letfindS(x)wehavexS(x)=n=0x3n+13n+1=w(x)w(x)=n=0x3n=11x3w(x)=0xdt1t3+cbutc=w(0)=0F(t)=11t3=1(1t)(t2+t+1)=a1t+bt+ct2+t+1a=limt1(1t)F(t)=13F(t)=13(1t)+bt+ct2+t+1limt+tF(t)=13+b=0b=13F(t)=13(1t)+13t+ct2+t+1F(0)=13+c=1c=113=23soF(t)=13(1t)+13t+2t2+t+13w(x)=0xdt1t+120x2t+1+3t2+t+1dt=[ln1t]0x+12[ln(t2+t+1)]0x+320xdtt2+t+1=ln1x+12ln(x2+x+1)+32II=0xdt(t+12)2+34=t+12=32u132x+13134(1+u2)32du=4332[arctan(u)]132x+13=23{arctan(2x+13)arctan(13)}3w(x)=ln1x+12ln(x2+x+1)+3{arctan(2x+13)π6}w(x)=13ln1x+16ln(x2+x+1)+13{arctan(2x+13)π6}andS(x)=w(x)x

Commented by abdo.msup.com last updated on 25/May/18

2) Σ_(n=0) ^∞     (1/((3n+1)8^n )) =S((1/2))  =2w((1/2))=2{ −(1/3)ln((1/2))+(1/6)ln((7/4))  +(1/(√3)){ arctan((2/(√3))) −(π/6)}  =(2/3)ln(2)  + (1/3)ln((7/4)) +(2/(√3))arctan((2/(√3)))  −(π/(3(√3))) .

2)n=01(3n+1)8n=S(12)=2w(12)=2{13ln(12)+16ln(74)+13{arctan(23)π6}=23ln(2)+13ln(74)+23arctan(23)π33.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com