All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 143083 by Mathspace last updated on 09/Jun/21
calculateΨ(a,b)=∫0∞e−ax2(x2+b2)2dxwitha>0andb>0
Answered by Olaf_Thorendsen last updated on 10/Jun/21
fb(a)=Ψ(a,b)=∫0∞e−ax2(x2+b2)2dxfb′(a)=∂Ψ∂a(a,b)=−∫0∞x2e−ax2(x2+b2)2dxfb″(a)=∂2Ψ∂a2(a,b)=+∫0∞x4e−ax2(x2+b2)2dxfb″(a)−2b2fb′(a)+b4fb(a)=∫0∞(x4+2b2x2+b4)e−ax2(x2+b2)2dx=∫0∞(x2+b2)2e−ax2(x2+b2)2dx=∫0∞e−ax2dx=1a∫0∞e−t2dt=12πa(2π∫0∞e−t2dt)=12πafb″(a)−2b2fb′(a)+b4fb(a)=12πafb(a)=Ψ(a,b)=(c1+c2a)eab2+π2eab2[aΓ(12,b2a)+Γ(32,ab2)b3]...tobecontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com