All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 100511 by mathmax by abdo last updated on 27/Jun/20
calculate∫−∞∞arctan(cosx+sinx)x2+4dx
Answered by abdomathmax last updated on 28/Jun/20
I=∫−∞+∞arctan(cosx+sinx)x2+4dx⇒I=∫−∞+∞arctan(2cos(x−π4))x2+4dxletφ(z)=arctan(2cos(z−π4))z2+4thepolesofφare2iand−2i⇒∫−∞+∞φ(z)dz=2iπRes(φ,2i)=2iπ×arctan(2cos(2i−π4))4i=π2arctan(2cos(2i−π4))cos(2i−π4)=ei(2i−π4)+e−i(2i−π4)2=e−2e−iπ4+e2eiπ42=e−2(12−i2)+e2(12+i2)2=122{e−2(1−i)+e2(1+i)}=....afterweusearctanz=12iln(1+iz1−iz)...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com