Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 133213 by mathmax by abdo last updated on 20/Feb/21

calculate c(ξ) =∫_0 ^∞  ((cos(ξx))/(1+x^4 ))dx

calculatec(ξ)=0cos(ξx)1+x4dx

Answered by mathmax by abdo last updated on 20/Feb/21

Φ(ξ)=∫_0 ^∞  ((cos(ξx))/(x^4 +1))dx ⇒2Φ(ξ)=∫_(−∞) ^(+∞)  ((cos(ξx))/(x^4 +1))dx  =Re(∫_(−∞) ^(+∞)  (e^(iξx) /(x^4 +1))dx) let ϕ(z)=(e^(iξz) /(z^4  +1)) ⇒ϕ(z)=(e^(iξz) /((z^2 −i)(z^2 +i)))  =(e^(iξz) /((z−(√i))(z+(√i))(z−(√(−i)))(z+(√(−i)))))=(e^(iξz) /((z−e^((iπ)/4) )(z+e^((iπ)/4) )(z−e^(−((iπ)/4)) )(z+e^(−((iπ)/4)) )))  and ∫_R ϕ(z)dz =2iπ{Res(ϕ,e^((iπ)/4) )+Res(ϕ,−e^(−((iπ)/4)) )}  Res(ϕ,e^((iπ)/4) ) =(e^(iξe^((iπ)/4) ) /(2e^((iπ)/4) (2i))) =(1/(4i))e^(−((iπ)/4))  .e^(iξ((1/( (√2)))+(i/( (√2)))))   =(1/(4i))e^(−((iπ)/4)) .e^((iξ)/( (√2)))   .e^(−(ξ/( (√2))))  =(1/(4i))e^(−(ξ/( (√2))))  e^(i(−(π/4)+(ξ/( (√2)))))   Res(ϕ,−e^(−((iπ)/4)) ) =(e^(−iξe^(−((iπ)/4)) ) /(−2e^(−((iπ)/4)) (−2i)))=(1/(4i))e^((iπ)/4)  .e^(−iξ((1/( (√2)))−(i/( (√2)))))   =(1/(4i)) e^((iπ)/4) .e^(−((iξ)/( (√2))))    .e^(−(ξ/( (√2))))   =(1/(4i)) e^(−(ξ/( (√2))))     e^(i((π/4)−(ξ/( (√2)))))  ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ.(1/(4i))e^(−(ξ/( (√2))))   {e^(i(−(π/4)+(ξ/( (√2)))))  +e^(i((π/4)−(ξ/( (√2))))) }  =(π/2)e^(−(ξ/( (√2))))   { e^(i((π/4)−(ξ/( (√2)))))  +e^(−i((π/4)−(ξ/( (√2))))) }  =(π/2)e^(−(ξ/( (√2))))    {2cos((π/4)−(ξ/( (√2))))} =e^(−(ξ/( (√2))))   cos((π/4)−(ξ/( (√2))))=2Φ(ξ) ⇒  Φ(ξ)=(1/2)e^(−(ξ/( (√2))))    cos((π/4)−(ξ/( (√2))))

Φ(ξ)=0cos(ξx)x4+1dx2Φ(ξ)=+cos(ξx)x4+1dx=Re(+eiξxx4+1dx)letφ(z)=eiξzz4+1φ(z)=eiξz(z2i)(z2+i)=eiξz(zi)(z+i)(zi)(z+i)=eiξz(zeiπ4)(z+eiπ4)(zeiπ4)(z+eiπ4)andRφ(z)dz=2iπ{Res(φ,eiπ4)+Res(φ,eiπ4)}Res(φ,eiπ4)=eiξeiπ42eiπ4(2i)=14ieiπ4.eiξ(12+i2)=14ieiπ4.eiξ2.eξ2=14ieξ2ei(π4+ξ2)Res(φ,eiπ4)=eiξeiπ42eiπ4(2i)=14ieiπ4.eiξ(12i2)=14ieiπ4.eiξ2.eξ2=14ieξ2ei(π4ξ2)+φ(z)dz=2iπ.14ieξ2{ei(π4+ξ2)+ei(π4ξ2)}=π2eξ2{ei(π4ξ2)+ei(π4ξ2)}=π2eξ2{2cos(π4ξ2)}=eξ2cos(π4ξ2)=2Φ(ξ)Φ(ξ)=12eξ2cos(π4ξ2)

Commented by mnjuly1970 last updated on 21/Feb/21

 nice very nice sir Max..

niceverynicesirMax..

Terms of Service

Privacy Policy

Contact: info@tinkutara.com