All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 133213 by mathmax by abdo last updated on 20/Feb/21
calculatec(ξ)=∫0∞cos(ξx)1+x4dx
Answered by mathmax by abdo last updated on 20/Feb/21
Φ(ξ)=∫0∞cos(ξx)x4+1dx⇒2Φ(ξ)=∫−∞+∞cos(ξx)x4+1dx=Re(∫−∞+∞eiξxx4+1dx)letφ(z)=eiξzz4+1⇒φ(z)=eiξz(z2−i)(z2+i)=eiξz(z−i)(z+i)(z−−i)(z+−i)=eiξz(z−eiπ4)(z+eiπ4)(z−e−iπ4)(z+e−iπ4)and∫Rφ(z)dz=2iπ{Res(φ,eiπ4)+Res(φ,−e−iπ4)}Res(φ,eiπ4)=eiξeiπ42eiπ4(2i)=14ie−iπ4.eiξ(12+i2)=14ie−iπ4.eiξ2.e−ξ2=14ie−ξ2ei(−π4+ξ2)Res(φ,−e−iπ4)=e−iξe−iπ4−2e−iπ4(−2i)=14ieiπ4.e−iξ(12−i2)=14ieiπ4.e−iξ2.e−ξ2=14ie−ξ2ei(π4−ξ2)⇒∫−∞+∞φ(z)dz=2iπ.14ie−ξ2{ei(−π4+ξ2)+ei(π4−ξ2)}=π2e−ξ2{ei(π4−ξ2)+e−i(π4−ξ2)}=π2e−ξ2{2cos(π4−ξ2)}=e−ξ2cos(π4−ξ2)=2Φ(ξ)⇒Φ(ξ)=12e−ξ2cos(π4−ξ2)
Commented by mnjuly1970 last updated on 21/Feb/21
niceverynicesirMax..
Terms of Service
Privacy Policy
Contact: info@tinkutara.com