Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 162016 by mathmax by abdo last updated on 25/Dec/21

calculate ∫_(−∞) ^(+∞)  ((cos(3x))/((x^2 +x+1)^2 ))dx

calculate+cos(3x)(x2+x+1)2dx

Commented by MJS_new last updated on 25/Dec/21

I can solve the indefinite integral but it′s a  long hard way...

Icansolvetheindefiniteintegralbutitsalonghardway...

Commented by mathmax by abdo last updated on 25/Dec/21

use residus theorem sir

useresidustheoremsir

Answered by Ar Brandon last updated on 24/Mar/22

Υ=∫_(−∞) ^(+∞) ((cos3x)/((x^2 +x+1)^2 ))dx=Re∫_(−∞) ^(+∞) (e^(3ix) /((x^2 +x+1)^2 ))dx  Let f(x)=(e^(3ix) /((x^2 +x+1)^2 )). Poles of f(x): e^((2/3)iπ)  and e^(−(2/3)iπ) , order-2    Υ=Re∫_(−∞) ^(+∞) f(x)dx=Re(2iπRes(f, e^((2/3)iπ) ))  Res (f, e^((2/3)iπ) )=lim_(x→e^((2/3)iπ) ) {(x−e^((2/3)iπ) )^2 f(x)}^((1)) =lim_(x→e^((2/3)iπ) ) {(e^(3ix) /((x−e^(−(2/3)iπ) )^2 ))}^((1))   =lim_(x→e^((2/3)iπ) ) {((3ie^(3ix) (x−e^(−(2/3)iπ) )^2 −2e^(3ix) (x−e^(−(2/3)iπ) ))/((x−e^(−(2/3)iπ) )^4 ))}  =−(1/9)(9ie^(3i(−(1/2)+i((√3)/2))) +2(√3)ie^(3i(−(1/2)+i((√3)/2))) )=−(1/9)(9+2(√3))e^((−((3(√3))/2)−i((3−π)/2)))   Υ=−((2π)/9)(9+2(√3))e^(−((3(√3))/2)) sin(((3−π)/2))=((2π)/9)(9+2(√3))e^(−((3(√3))/2)) cos((3/2))

Υ=+cos3x(x2+x+1)2dx=Re+e3ix(x2+x+1)2dxLetf(x)=e3ix(x2+x+1)2.Polesoff(x):e23iπande23iπ,order2Υ=Re+f(x)dx=Re(2iπRes(f,e23iπ))Res(f,e23iπ)=limxe23iπ{(xe23iπ)2f(x)}(1)=limxe23iπ{e3ix(xe23iπ)2}(1)=limxe23iπ{3ie3ix(xe23iπ)22e3ix(xe23iπ)(xe23iπ)4}=19(9ie3i(12+i32)+23ie3i(12+i32))=19(9+23)e(332i3π2)Υ=2π9(9+23)e332sin(3π2)=2π9(9+23)e332cos(32)

Commented by Mathspace last updated on 26/Dec/21

error of calculus..

errorofcalculus..

Commented by Ar Brandon last updated on 26/Dec/21

Thank you for checking, Sir. Rectified!

Thankyouforchecking,Sir.Rectified!

Answered by Mathspace last updated on 26/Dec/21

Ψ=∫_(−∞) ^(+∞ ) ((cos(3x))/((x^2 +x+1)^2 ))dx ⇒  Ψ=Re(∫_(−∞) ^(+∞)  (e^(3ix) /((x^2 +x+1)^2 ))dx)  let ϕ(z)=(e^(3iz) /((z^2 +z+1)^2 )) poles of ϕ?  z^2  +z+1=0→Δ=1−4=−3 ⇒  z_1 =((−1+i(√3))/2)=e^((i2π)/3)   z_2 =((−1−i(√3))/2)=e^(−((i2π)/3))   the poles are z_i   (with ordre=2)  ϕ(z)=(e^(3iz) /((z−z_1 )^2 (z−z_2 )^2 ))  ∫_(−∞) ^(+∞)  ϕ(z)dz=2iπRes(ϕ,z_1 )  Res(ϕ,z_1 )=lim_(z→z_1 )  (1/((2−1)!)){(z−z_1 )^2 ϕ(z)}^((1))   =lim_(z→z_1 )   {(e^(3iz) /((z−z_2 )^2 ))}^((1))   =lim_(z→z1)    ((3ie^(3iz) (z−z_2 )^2 −2(z−z_2 )e^(3iz) )/((z−z_2 )^4 ))  =lim_(z→z_1 )    (({3i(z−z_2 )−2}e^(3iz) )/((z−z_2 )^3 ))  =(({3i(z_1 −z_2 )−2}e^(3iz_1 ) )/((z_1 −z_2 )^3 ))  =(({3i(i(√3))−2}e^(3i(((−1+i(√3))/2))) )/((i(√3))^3 ))  =(({−3(√3)−2}e^(−((3(√3))/2)) {cos((3/2))−isin((3/2))})/(−3i(√3)))  =(({3(√3)+2}e^(−((3(√3))/2)) {cos((3/2))−isin((3/2))})/(3i(√3)))  ∫_(−∞) ^(+∞)  ϕ(z)dz=((2iπ)/(3i(√3))){3(√3)+2}(...)  ⇒Ψ=((2π)/(3(√3)))(3(√3)+2)e^(−((3(√3))/2)) cos((3/2))

Ψ=+cos(3x)(x2+x+1)2dxΨ=Re(+e3ix(x2+x+1)2dx)letφ(z)=e3iz(z2+z+1)2polesofφ?z2+z+1=0Δ=14=3z1=1+i32=ei2π3z2=1i32=ei2π3thepolesarezi(withordre=2)φ(z)=e3iz(zz1)2(zz2)2+φ(z)dz=2iπRes(φ,z1)Res(φ,z1)=limzz11(21)!{(zz1)2φ(z)}(1)=limzz1{e3iz(zz2)2}(1)=limzz13ie3iz(zz2)22(zz2)e3iz(zz2)4=limzz1{3i(zz2)2}e3iz(zz2)3={3i(z1z2)2}e3iz1(z1z2)3={3i(i3)2}e3i(1+i32)(i3)3={332}e332{cos(32)isin(32)}3i3={33+2}e332{cos(32)isin(32)}3i3+φ(z)dz=2iπ3i3{33+2}(...)Ψ=2π33(33+2)e332cos(32)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com