All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 38467 by maxmathsup by imad last updated on 25/Jun/18
calculate∫−∞+∞cos(ax)ch(bx)x2+1dx.
Commented by math khazana by abdo last updated on 28/Jun/18
letI=∫−∞+∞cos(ax)ch(bx)x2+1dxI=Re(∫−∞+∞eiax(ebx+e−bx)2(x2+1)dx)=Re(∫−∞+∞e(b+ia)x+e(−b+ia)x2(x2+1)dx)letφ(z)=e(b+ia)z+e(−b+ia)z2(z2+1)thepolesofφareiand−i∫−∞+∞φ(z)dz=2iπRes(φ,i)Re(φ,i)=e(b+ia)i+e(−b+ia)i2(2i)=e−a+bi+e−a−bi4i∫−∞+∞φ(z)dz=2iπe−a+bi+e−a−bi4i=π2{e−a(cosb+isinb)+e−a(cosb−isinb)}=π2e−a(2cosb)=πe−acosb⇒I=Re(∫−∞+∞φ(z)dz)=πe−acos(b).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com