Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 35055 by math khazana by abdo last updated on 14/May/18

calculate ∫_(−∞) ^(+∞)      (dx/((1+x+x^2 )^3 ))

calculate+dx(1+x+x2)3

Commented by math khazana by abdo last updated on 15/May/18

let put I = ∫_(−∞) ^(+∞)     (dx/((1+x+x^2 )^3 ))  I =∫_(−∞) ^(+∞)      (dx/({(x+(1/2))^2   +(3/4)}^3 ))? changement  x+(1/2) =((√3)/2)tant gibe  I = ∫_(−(π/3)) ^(π/2)            (1/(((3/4))^3 (1+tan^2 t)^3 )) ((√3)/2)( 1+tan^2 t)dt  =(4^3 /3^3 ) ((√3)/2)  ∫_(−(π/2)) ^(π/2)       (dt/((1+tan^2 t)^2 ))  =(4^3 /3^3 ) (√3)  ∫_0 ^(π/2)  cos^4 tdt  = (4^3 /3^3 ) (√3)  ∫_0 ^(π/2)   (((1+cos(2t))^2 )/4)dt  = ((16)/(27)) (√3)  ∫_0 ^(π/2) (1+2cos(2t)  +((1+cos(4t))/2))dt  = ((8π(√3))/(27))   +((4π(√3))/(27)) = ((12π(√3))/(3.9)) =((4π(√3))/9)  I = ((4π(√3))/9) .

letputI=+dx(1+x+x2)3I=+dx{(x+12)2+34}3?changementx+12=32tantgibeI=π3π21(34)3(1+tan2t)332(1+tan2t)dt=433332π2π2dt(1+tan2t)2=433330π2cos4tdt=433330π2(1+cos(2t))24dt=162730π2(1+2cos(2t)+1+cos(4t)2)dt=8π327+4π327=12π33.9=4π39I=4π39.

Commented by abdo imad last updated on 17/May/18

let introduce the complex function ϕ(z)= (1/((1+z+z^2 )^3 ))  the[poles of ϕ are j=e^(i((2π)/3))   and j^− =e^(−i((2π)/3))  (triple poles  ϕ(z)=  (1/((z−j)^3 (z−j^− )^3 ))  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,j) but   Res(ϕ,j) =lim_(z→j)     (1/((3−1)!)){ (z−j)^3 ϕ(z)}^((2))   =lim_(z→j)  (1/2) {(z−j^− )^(−3) }^((2))    but we have  {(z−j^− )^(−3) }^((1)) =−3(z−j^− )^(−4)   {(z−j^− )}^((2)) = 12(z−j^− )^(−5)   Res(ϕ,j) =lim_(z→j)   6(z−j^− )^(−5) =6(j−j^− )^(−5)   =6(2i ((√3)/2))^(−5) =(6/((i(√3))^5 )) = (6/(i 9(√3)))  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ  (6/(i9(√3))) = ((2π .3.2)/(3.3(√3))) = ((4π)/(3(√3))) ⇒  ★∫_(−∞) ^(+∞)    (dx/((1+x+x^2 )^3 )) = ((4π(√3))/9)  ★

letintroducethecomplexfunctionφ(z)=1(1+z+z2)3the[polesofφarej=ei2π3andj=ei2π3(triplepolesφ(z)=1(zj)3(zj)3+φ(z)dz=2iπRes(φ,j)butRes(φ,j)=limzj1(31)!{(zj)3φ(z)}(2)=limzj12{(zj)3}(2)butwehave{(zj)3}(1)=3(zj)4{(zj)}(2)=12(zj)5Res(φ,j)=limzj6(zj)5=6(jj)5=6(2i32)5=6(i3)5=6i93+φ(z)dz=2iπ6i93=2π.3.23.33=4π33+dx(1+x+x2)3=4π39

Answered by MJS last updated on 15/May/18

∫(dx/((x^2 +x+1)^3 ))=∫(dx/(((x+(1/2))^2 +(3/4))^3 ))=  =64∫(dx/(((2x+1)^2 ++3)^3 ))=            [u=2x+1 → dx=(du/2)]  =32∫(du/((u^2 +3)^3 ))            [∫(du/((au^2 +b)^n ))=(u/(2b(n−1)(au^2 +b)^(n−1) ))+((2n−3)/(2b(n−1)))∫(du/((au^2 +b)^(n−1) ))]       a=1; b=3; n=3  =32((u/(12(u^2 +3)^2 ))+(1/4)∫(du/((u^2 +3)^2 )))=       a=1; b=3; n=2  =32((u/(12(u^2 +3)^2 ))+(1/4)((u/(6(u^2 +3)))+(1/6)∫(du/(u^2 +3))))=            [v=((u(√3))/3) → du=(√3)dv]  =32((u/(12(u^2 +3)^2 ))+(1/4)((u/(6(u^2 +3)))+((√3)/(18))∫(dv/(v^2 +1))))=  =32((u/(12(u^2 +3)^2 ))+(1/4)((u/(6(u^2 +3)))+((√3)/(18))arctan(v)))=  =32((u/(12(u^2 +3)^2 ))+(1/4)((u/(6(u^2 +3)))+((√3)/(18))arctan(((u(√3))/3))))=  =((8u)/(3(u^2 +3)^2 ))+((4u)/(3(u^2 +3)))+((4(√3))/9)arctan(((u(√3))/3))=  =((4u(u^2 +5))/(3(u^2 +3)^2 ))+((4(√3))/9)arctan(((u(√3))/3))=  =((4(2x+1)((2x+1)^2 +5))/(3((2x+1)^2 +3)^2 ))+((4(√3))/9)arctan(((√3)/3)(2x+1))=  =(((2x+1)(2x^2 +2x+3))/(6(x^2 +x+1)^2 ))+((4(√3))/9)arctan(((√3)/3)(2x+1))+C    ∫_(−∞) ^∞ (dx/((x^2 +x+1)^3 ))=((4(√3))/9)π

dx(x2+x+1)3=dx((x+12)2+34)3==64dx((2x+1)2++3)3=[u=2x+1dx=du2]=32du(u2+3)3[du(au2+b)n=u2b(n1)(au2+b)n1+2n32b(n1)du(au2+b)n1]a=1;b=3;n=3=32(u12(u2+3)2+14du(u2+3)2)=a=1;b=3;n=2=32(u12(u2+3)2+14(u6(u2+3)+16duu2+3))=[v=u33du=3dv]=32(u12(u2+3)2+14(u6(u2+3)+318dvv2+1))==32(u12(u2+3)2+14(u6(u2+3)+318arctan(v)))==32(u12(u2+3)2+14(u6(u2+3)+318arctan(u33)))==8u3(u2+3)2+4u3(u2+3)+439arctan(u33)==4u(u2+5)3(u2+3)2+439arctan(u33)==4(2x+1)((2x+1)2+5)3((2x+1)2+3)2+439arctan(33(2x+1))==(2x+1)(2x2+2x+3)6(x2+x+1)2+439arctan(33(2x+1))+Cdx(x2+x+1)3=439π

Terms of Service

Privacy Policy

Contact: info@tinkutara.com