All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 35055 by math khazana by abdo last updated on 14/May/18
calculate∫−∞+∞dx(1+x+x2)3
Commented by math khazana by abdo last updated on 15/May/18
letputI=∫−∞+∞dx(1+x+x2)3I=∫−∞+∞dx{(x+12)2+34}3?changementx+12=32tantgibeI=∫−π3π21(34)3(1+tan2t)332(1+tan2t)dt=433332∫−π2π2dt(1+tan2t)2=43333∫0π2cos4tdt=43333∫0π2(1+cos(2t))24dt=16273∫0π2(1+2cos(2t)+1+cos(4t)2)dt=8π327+4π327=12π33.9=4π39I=4π39.
Commented by abdo imad last updated on 17/May/18
letintroducethecomplexfunctionφ(z)=1(1+z+z2)3the[polesofφarej=ei2π3andj−=e−i2π3(triplepolesφ(z)=1(z−j)3(z−j−)3∫−∞+∞φ(z)dz=2iπRes(φ,j)butRes(φ,j)=limz→j1(3−1)!{(z−j)3φ(z)}(2)=limz→j12{(z−j−)−3}(2)butwehave{(z−j−)−3}(1)=−3(z−j−)−4{(z−j−)}(2)=12(z−j−)−5Res(φ,j)=limz→j6(z−j−)−5=6(j−j−)−5=6(2i32)−5=6(i3)5=6i93∫−∞+∞φ(z)dz=2iπ6i93=2π.3.23.33=4π33⇒★∫−∞+∞dx(1+x+x2)3=4π39★
Answered by MJS last updated on 15/May/18
∫dx(x2+x+1)3=∫dx((x+12)2+34)3==64∫dx((2x+1)2++3)3=[u=2x+1→dx=du2]=32∫du(u2+3)3[∫du(au2+b)n=u2b(n−1)(au2+b)n−1+2n−32b(n−1)∫du(au2+b)n−1]a=1;b=3;n=3=32(u12(u2+3)2+14∫du(u2+3)2)=a=1;b=3;n=2=32(u12(u2+3)2+14(u6(u2+3)+16∫duu2+3))=[v=u33→du=3dv]=32(u12(u2+3)2+14(u6(u2+3)+318∫dvv2+1))==32(u12(u2+3)2+14(u6(u2+3)+318arctan(v)))==32(u12(u2+3)2+14(u6(u2+3)+318arctan(u33)))==8u3(u2+3)2+4u3(u2+3)+439arctan(u33)==4u(u2+5)3(u2+3)2+439arctan(u33)==4(2x+1)((2x+1)2+5)3((2x+1)2+3)2+439arctan(33(2x+1))==(2x+1)(2x2+2x+3)6(x2+x+1)2+439arctan(33(2x+1))+C∫∞−∞dx(x2+x+1)3=439π
Terms of Service
Privacy Policy
Contact: info@tinkutara.com