All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 67673 by Abdo msup. last updated on 30/Aug/19
calculate∫−∞+∞dx(x2−x+1)(x2+x+1)
Commented by Abdo msup. last updated on 30/Aug/19
letA=∫−∞+∞dx(x2−x+1)(x2+x+1)andφ(z)=1(z2−z+1)(z2+z+1)polesofφ?z2−z+1=0→Δ=−3=(i3)2⇒z1=1+i32andz2=1−i32z2+z+1=0→Δ=−3=(i3)2⇒α1=−1+i32andα2=−1−i32φ(z)=1(x−z1)(x−z2)(x−α1)(x−α2)residustheoremgive∫−∞+∞φ(z)dz=2iπ{Res(φ,z1)+Res(φ,α1)}Res(φ,z1)=1(z1−z2)(z12+z1+1)=1i3(z12+z1+1)Res(φ,α1)=1(α1−α2)(α12−α1+1)=1i3(α12−α1+1)∫−∞+∞φ(z)dz=2iπ{1i3(z12+z1+1)+1i3(α12−α1+1)}=2π3{1z12+z1+1+1α12−α1+1}
Terms of Service
Privacy Policy
Contact: info@tinkutara.com