Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 67310 by mathmax by abdo last updated on 25/Aug/19

calculate ∫_(−∞) ^(+∞)   (dx/(x^4  +x^2  +1))

calculate+dxx4+x2+1

Commented by mathmax by abdo last updated on 25/Aug/19

let I =∫_(−∞) ^(+∞)  (dx/(x^4  +x^2  +1)) ⇒I =2 ∫_0 ^(+∞)  (dx/(x^4  +x^2  +1))  we have x^4   +x^2  +1 =(x^2 +1)^2 −2x^2  +x^2  =(x^2  +1)^2 −x^2   =(x^2 −x+1)(x^2 +x+1) ⇒ I =2 ∫_0 ^(+∞)  (dx/((x^2  +x+1)(x^2 −x+1)))  let decompose F(x) =(1/((x^2  +x+1)(x^2 −x+1)))   F(x) =((ax+b)/(x^2  +x +1)) +((cx+d)/(x^2 −x+1))  F(−x)=F(x) ⇒((−ax+b)/(x^2 −x+1)) +((−cx+d)/(x^2 +x+1)) =F(x) ⇒  c=−a and d=b ⇒F(x) =((ax+b)/(x^2  +x+1)) +((−ax+b)/(x^2 −x +1))  F(0) =1 =2b ⇒b =(1/2)  F(1) =(1/3) =((a+b)/3) +b−a ⇒3 =a+b+3b−3a =−2a+2 ⇒1 =−2a ⇒  a=−(1/2) ⇒ F(x) =((−(1/2)x+(1/2))/(x^2  +x+1)) +(((1/2)x+(1/2))/(x^2 −x +1))  =(1/2){((−x+1)/(x^2  +x+1))+((x+1)/(x^2 −x +1))} ⇒∫_0 ^(+∞) F(x)dx  =−(1/2)   ∫_0 ^∞   ((x−1)/(x^2  +x+1))dx +(1/2)∫_0 ^∞    ((x+1)/(x^2 −x+1))dx  =−(1/4)∫_0 ^∞ ((2x+1−3)/(x^2  +x+1))dx +(1/4)∫_0 ^∞   ((2x−1+3)/(x^2 −x +1))dx  =(1/4)[ln∣((x^2 −x+1)/(x^2  +x+1))∣]_0 ^(+∞)  +(3/4)∫_0 ^∞   (dx/(x^2 −x +1)) +(3/4)∫_0 ^∞   (dx/(x^2  +x+1))  =0 +(3/4) ∫_0 ^∞   (dx/(x^2 −x+1)) +(3/4)∫_0 ^∞  (dx/(x^2  +x +1))  ∫_0 ^∞    (dx/(x^2 −x +1)) =∫_0 ^∞   (dx/((x−(1/2))^2 +(3/4))) =_(x−(1/2)=((√3)/2)u)  (4/3)  ∫_(−(1/(√3))) ^(+∞)   (1/(u^2  +1))((√3)/2)du  =(2/(√3))[arctanu]_(−(1/(√3))) ^(+∞)  =(2/(√3)){ (π/2) +arctan((1/(√3)))}=(2/(√3)){(π/2)+(π/6)}  =(2/(√3)){((2π)/3)} =((4π)/(3(√3)))  ∫_0 ^∞     (dx/(x^2  +x +1)) =∫_0 ^∞     (dx/((x+(1/2))^(2 )  +(3/4))) =_(x+(1/2)=((√3)/2)u) (4/3) ∫_(1/(√3)) ^∞    (1/(u^2  +1))((√3)/2)du  =((2(√3))/3)[arctan(u)]_(1/(√3)) ^(+∞)  =(2/(√3)){(π/2)−(π/6)}=(2/(√3)){(π/3)} =((2π)/(3(√3))) ⇒  ∫_0 ^∞  F(x)dx =(3/4)×((4π)/(3(√3))) +(3/4)×((2π)/(3(√3))) =(π/(√3)) +(π/(2(√3))) =(3/2)(π/(√3))  we have I =2 ∫_0 ^∞  F(x)dx =((3π)/(√3)) =π(√3)

letI=+dxx4+x2+1I=20+dxx4+x2+1wehavex4+x2+1=(x2+1)22x2+x2=(x2+1)2x2=(x2x+1)(x2+x+1)I=20+dx(x2+x+1)(x2x+1)letdecomposeF(x)=1(x2+x+1)(x2x+1)F(x)=ax+bx2+x+1+cx+dx2x+1F(x)=F(x)ax+bx2x+1+cx+dx2+x+1=F(x)c=aandd=bF(x)=ax+bx2+x+1+ax+bx2x+1F(0)=1=2bb=12F(1)=13=a+b3+ba3=a+b+3b3a=2a+21=2aa=12F(x)=12x+12x2+x+1+12x+12x2x+1=12{x+1x2+x+1+x+1x2x+1}0+F(x)dx=120x1x2+x+1dx+120x+1x2x+1dx=1402x+13x2+x+1dx+1402x1+3x2x+1dx=14[lnx2x+1x2+x+1]0++340dxx2x+1+340dxx2+x+1=0+340dxx2x+1+340dxx2+x+10dxx2x+1=0dx(x12)2+34=x12=32u4313+1u2+132du=23[arctanu]13+=23{π2+arctan(13)}=23{π2+π6}=23{2π3}=4π330dxx2+x+1=0dx(x+12)2+34=x+12=32u43131u2+132du=233[arctan(u)]13+=23{π2π6}=23{π3}=2π330F(x)dx=34×4π33+34×2π33=π3+π23=32π3wehaveI=20F(x)dx=3π3=π3

Commented by MJS last updated on 26/Aug/19

∫(dx/(x^4 +x^2 +1))=  =∫(−((2x−1)/(4(x^2 −x+1)))+(1/(4(x^2 −x+1)))+((2x+1)/(4(x^2 +x+1)))+(1/(4(x^2 +x+1))))dx=  =−(1/4)ln (x^2 −x+1) +((√3)/6)arctan (((√3)(2x−1))/3) +(1/4)ln (x^2 +x+1) +((√3)/6)arctan (((√3)(2x+1))/3) =  =(1/4)ln ((x^2 +x+1)/(x^2 −x+1)) +((√3)/6)(arctan (((√3)(2x−1))/3) +arctan (((√3)(2x+1))/3)) +C  ∫_(−∞) ^(+∞) (dx/(x^4 +x^2 +1))=((π(√3))/3)

dxx4+x2+1==(2x14(x2x+1)+14(x2x+1)+2x+14(x2+x+1)+14(x2+x+1))dx==14ln(x2x+1)+36arctan3(2x1)3+14ln(x2+x+1)+36arctan3(2x+1)3==14lnx2+x+1x2x+1+36(arctan3(2x1)3+arctan3(2x+1)3)+C+dxx4+x2+1=π33

Answered by Kunal12588 last updated on 25/Aug/19

(1/2)∫((2/x^2 )/(x^2 +1+(1/x^2 )))dx=(1/2)∫((1+(1/x^2 ))/(x^2 +(1/x^2 )+1))dx−(1/2)∫((1−(1/x^2 ))/(x^2 +(1/x^2 )+1))dx  (x+(1/x))=t⇒(1−(1/x^2 ))dx=dt  (x−(1/x))=u⇒(1+(1/x^2 ))dx=du  x^2 +(1/x^2 )+1=t^2 −1 and x^2 +(1/x^2 )+1=u^2 +3  I=(1/2)∫(du/(u^2 +3))−(1/2)∫(dt/(t^2 −1))  =(1/2)×(1/(√3))×tan^(−1) ((u/(√3)))−(1/2)×(1/2)ln∣((t−1)/(t+1))∣+C  =(1/(2(√3))) tan^(−1) (((x^2 −1)/(x(√3))))−(1/4) ln∣((x^2 −x+1)/(x^2 +x+1))∣+C  I_1 =∫_(−∞) ^(+∞)   (dx/(x^4  +x^2  +1))=[I ]_(−∞) ^(+∞)   lim_(x→+∞)  I = (1/(2(√3))) lim_(x→+∞) arctan((x/(√3))−(1/(x(√3))))−(1/4) lim_(x→+∞)  ln∣((1−(1/x)+(1/x^2 ))/(1+(1/x)+(1/x^2 )))∣  = (1/(2(√3))) lim_(x→+∞) arctan((x/(√3))−(1/(x(√3))))−(1/4) lim_(x→+∞)  ln∣1∣  = (1/(2(√3)))×(π/2)−0=(π/(4(√3)))  lim_(x→−∞) I= (1/(2(√3))) lim_(x→−∞)  arctan((x/(√3))−(1/(x(√3))))−0  =(1/(2(√3)))×((−π)/2)=−(π/(4(√3)))  I_1 =(π/(4(√3)))+(π/(4(√3)))=(π/(2(√3)))

122x2x2+1+1x2dx=121+1x2x2+1x2+1dx1211x2x2+1x2+1dx(x+1x)=t(11x2)dx=dt(x1x)=u(1+1x2)dx=dux2+1x2+1=t21andx2+1x2+1=u2+3I=12duu2+312dtt21=12×13×tan1(u3)12×12lnt1t+1+C=123tan1(x21x3)14lnx2x+1x2+x+1+CI1=+dxx4+x2+1=[I]+limx+I=123limarctanx+(x31x3)14limx+ln11x+1x21+1x+1x2=123limarctanx+(x31x3)14limx+ln1=123×π20=π43limIx=123limxarctan(x31x3)0=123×π2=π43I1=π43+π43=π23

Commented by mathmax by abdo last updated on 25/Aug/19

thanks a lots for this hard work.

thanksalotsforthishardwork.

Commented by Kunal12588 last updated on 26/Aug/19

but it seems wrong. can u pls check where it  goes wrong

butitseemswrong.canuplscheckwhereitgoeswrong

Commented by mathmax by abdo last updated on 26/Aug/19

give opportunity to the method...

giveopportunitytothemethod...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com