Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 36919 by maxmathsup by imad last updated on 07/Jun/18

calculate f(α)= ∫_(−∞) ^(+∞)  (1+αi)^(−x^2 ) dx .

calculatef(α)=+(1+αi)x2dx.

Commented by abdo.msup.com last updated on 10/Jun/18

we have 1+αi =(√(1+α^2 ))((1/(√(1+α^2 ))) +(α/(√(1+α^2 )))i)  =r e^(iθ)   ⇒ r =(√(1+α^2 ))   and  cosθ =(1/(√(1+α^2 )))  sinθ = (α/(√(1+α^2 ))) ⇒tanθ =α ⇒θ=arctan(α)  1+αi =r e^(i arctan(α))  ⇒  f(α) = ∫_(−∞) ^(+∞)   (r e^(iarctan(α)) )^(−x^2 ) dx  =∫_(−∞) ^(+∞)  (e^(ln(r)+iarctan(α)) )^(−x^2 ) dx  =∫_(−∞) ^(+∞)   e^(−(ln((√(1+α^2  ))+i arctan(α))^ x^2 ) dx   changement (√(ln((√(1+α^2 )))+i artan(α)))x=t  give  f(α)= (1/(√(ln((√(1+α^2 ))+i arctan(α)))) ∫_(−∞) ^(+∞)  e^(−t^2 ) dt  =  ((√π)/(√(ln((√(1+α^2 )))+i arctan(α)))).

wehave1+αi=1+α2(11+α2+α1+α2i)=reiθr=1+α2andcosθ=11+α2sinθ=α1+α2tanθ=αθ=arctan(α)1+αi=reiarctan(α)f(α)=+(reiarctan(α))x2dx=+(eln(r)+iarctan(α))x2dx=+e(ln(1+α2+iarctan(α))x2dxchangementln(1+α2)+iartan(α)x=tgivef(α)=1ln(1+α2+iarctan(α)+et2dt=πln(1+α2)+iarctan(α).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com