Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 78266 by msup trace by abdo last updated on 15/Jan/20

calculate f(a)=∫_0 ^1 ln(1−ax^3 )dx  with 0<a<1

calculatef(a)=01ln(1ax3)dxwith0<a<1

Commented by mathmax by abdo last updated on 18/Jan/20

f(a) =∫_0 ^1 ln(1−(^3 (√a)x)^3 )dx =_((^3 (√a)x)=t)    ∫_0 ^((^3 (√a))) ln(1−t^3 )(dt/((^3 (√a))))  =(1/((^3 (√a)))) ∫_0 ^((^3 (√a))) ln(1−t^3 )dt  we have ln(1−u))^((1)) =−(1/(1−u))  =−Σ_(n=0) ^∞ u^n  ⇒ln(1−u) =−Σ_(n=0) ^∞  (u^(n+1) /(n+1)) =−Σ_(n=1) ^∞  (u^n /n)  we have 0<(^3 (√a))<1 ⇒ln(1−t^3 )=−Σ_(n=1) ^∞  (t^(3n) /n) ⇒  ∫_0 ^((^3 (√a))) ln(1−t^3 )dt =−Σ_(n=1) ^∞  (1/n) ∫_0 ^((^3 (√a)))  t^(3n)  dt  =−Σ_(n=1) ^∞  (1/(n(3n+1)))[ t^(3n+1) ]_0 ^((^3 (√a)))  =−Σ_(n=1) ^∞  (((^3 (√a))a^n )/(n(3n+1))) ⇒  f(a) =−Σ_(n=1) ^∞  (a^n /(n(3n+1))) ⇒−(1/3)f(a) =Σ_(n=1) ^∞  (a^n /(3n(3n+1)))  =Σ_(n=1) ^∞ ((1/(3n))−(1/(3n+1)))a^n  =(1/3)Σ_(n=1) ^∞  (a^n /n)−Σ_(n=1) ^∞  (a^n /(3n+1))  =−(1/3)ln(1−a)−Σ_(n=1) ^∞  (a^n /(3n+1))    Σ_(n=1) ^∞  (a^n /(3n+1)) =Σ_(n=1) ^∞ ((((^3 (√a))^(3n+1) )/(3n+1)))×(1/((^3 (√a)))) =(1/((^3 (√a))))W(^3 (√a)) with  w(x)=Σ_(n=1) ^∞  (x^(3n+1) /(3n+1)) ⇒w^′ (x)=Σ_(n=1) ^∞  x^(3n)  =(1/(1−x^3 ))−1 ⇒  w(x)=∫_0 ^x ((1/(1−t^3 ))−1)dt +c =−x +∫_0 ^x  (dt/((1−t^3 ))) =−x−∫_0 ^x  (dt/(t^3 −1))  let decompose F(t) =(1/(t^3 −1)) =(1/((t−1)(t^2  +t+1)))  F(t)=(a/(t−1)) +((bt+c)/(t^2  +t +1))

f(a)=01ln(1(3ax)3)dx=(3ax)=t0(3a)ln(1t3)dt(3a)=1(3a)0(3a)ln(1t3)dtwehaveln(1u))(1)=11u=n=0unln(1u)=n=0un+1n+1=n=1unnwehave0<(3a)<1ln(1t3)=n=1t3nn0(3a)ln(1t3)dt=n=11n0(3a)t3ndt=n=11n(3n+1)[t3n+1]0(3a)=n=1(3a)ann(3n+1)f(a)=n=1ann(3n+1)13f(a)=n=1an3n(3n+1)=n=1(13n13n+1)an=13n=1annn=1an3n+1=13ln(1a)n=1an3n+1n=1an3n+1=n=1((3a)3n+13n+1)×1(3a)=1(3a)W(3a)withw(x)=n=1x3n+13n+1w(x)=n=1x3n=11x31w(x)=0x(11t31)dt+c=x+0xdt(1t3)=x0xdtt31letdecomposeF(t)=1t31=1(t1)(t2+t+1)F(t)=at1+bt+ct2+t+1

Commented by mathmax by abdo last updated on 18/Jan/20

a =(t−1)F(t)∣_(t=1) =(1/3)  lim_(t→+∞) tF(t) =0 =a+b ⇒b =−(1/3)  F(0)=−a +c =−1 ⇒c =a−1 =(1/3)−1 =−(2/3) ⇒  F(t)=(1/(3(t−1))) −(1/3)((t+2)/(t^2  +t +1)) ⇒ ∫ F(t)dt =(1/3)ln∣t−1∣−(1/6)∫((2t+1+3)/(t^2  +t+1))dt  =(1/3)ln∣t−1∣−(1/6)ln(t^2  +t +1)−(1/2) ∫ (dt/(t^2  +t +1))  ∫  (dt/(t^2  +t +1)) =∫  (dt/((t+(1/2))^2  +(3/4))) =_(t+(1/2)=((√3)/2)u)  (4/3) ∫  (1/(u^2  +1))×((√3)/2)du  =(2/(√3)) arctan(((2t+1)/(√3))) ⇒∫_0 ^x  F(t)dt =[(1/3)ln∣t−1∣−(1/6)ln(t^2  +t +1)]_0 ^x   −(1/(√3))[ arctan(((2t+1)/(√3)))]_0 ^x =(1/3)ln∣x−1∣−(1/6)ln(x^2  +x+1)  −(1/(√3)){ arctan(((2x+1)/(√3)))−arctan((1/(√3))) ⇒  w(x)=x−(1/3)ln∣x−1∣+(1/6)ln(x^2  +x+1)+(1/(√3)){ arctan(((2x+1)/(√3)))−(π/6)}  ⇒f(a)=−(1/3)ln(1−a)−(1/((^3 (√a))))w(^3 (√a))  f(a) =−(1/3)ln(1−a)−(1/((^3 (√a)))){^3 (√a)−(1/3)ln∣^3 (√a)−1∣+(1/6)ln((^3 (√a))^2  +^3 (√a)+1)  +(1/(√3)) arctan(((2(^3 (√a))+1)/(√3)))−(π/(6(√3)))}

a=(t1)F(t)t=1=13limt+tF(t)=0=a+bb=13F(0)=a+c=1c=a1=131=23F(t)=13(t1)13t+2t2+t+1F(t)dt=13lnt1162t+1+3t2+t+1dt=13lnt116ln(t2+t+1)12dtt2+t+1dtt2+t+1=dt(t+12)2+34=t+12=32u431u2+1×32du=23arctan(2t+13)0xF(t)dt=[13lnt116ln(t2+t+1)]0x13[arctan(2t+13)]0x=13lnx116ln(x2+x+1)13{arctan(2x+13)arctan(13)w(x)=x13lnx1+16ln(x2+x+1)+13{arctan(2x+13)π6}f(a)=13ln(1a)1(3a)w(3a)f(a)=13ln(1a)1(3a){3a13ln3a1+16ln((3a)2+3a+1)+13arctan(2(3a)+13)π63}

Answered by mind is power last updated on 15/Jan/20

ln(1−ax^3 )=  ln(1−ax^3 )=−Σ_(k≥1) ((a^k x^(3k) )/k)  f(a)=−∫_0 ^1 Σ_(k≥1) (a^k /k).x^(3k) dx  =−Σ_(k≥1) (a^k /(k(3k+1)))  =−(1/3){Σ_(k≥1) (a^k /k)−Σ_(k≥1) (a^(3k) /(3k+1))}  =−(1/3)Σ_(k≥1) (a^k /k)+(1/3)Σ_(k≥1) (a^(3k) /(3k+1))  =((ln(1−a))/3)+(1/(3a)).Σ_(k≥1) (a^(3k+1) /(3k+1))  g(a)=Σ_(k≥1) (a^(3k+1) /(3k+1))⇒g′(a)=Σ_(k≥1) a^(3k) =(a^3 /(1−a^3 ))  g(a)=∫_0 ^a (x^3 /(1−x^3 ))dx=∫_0 ^a (−1+(1/(1−x^3 )))dx  =−a+∫_0 ^a (dx/((1−x)(1+x+x^2 )))=−a+∫_0 ^a (1/3){(1/((1−x)))+((x+2)/(1+x+x^2 ))}dx  =−a+(1/3)∫_0 ^a ((1/(1−x))+((x+(1/2))/(1+x+x^2 ))+(3/2).(1/((x+(1/2))^2 +(3/4))))dx  =−a+((ln(1−a))/3)+(1/6)ln(1+a+a^2 )+(2/3)∫_0 ^a (dx/((((2x+1)/(√3)))^2 +1))  g(a)=−a+((ln(1−a))/3)+((ln(1+a+a^2 ))/6)+(1/(√3)){arctan(((2a+1)/(√3)))−(π/6)}  f(a)=((ln(1−a))/3)+(1/(3a))g(a)  =−(1/3)+(1/(3a))(aln(1−a)+ln(1−a))+((ln(1+a+a^2 ))/(18a))+(1/(3a(√3))){arctan(((2a+1)/(√3)))−(π/6)}

ln(1ax3)=ln(1ax3)=k1akx3kkf(a)=01k1akk.x3kdx=k1akk(3k+1)=13{k1akkk1a3k3k+1}=13k1akk+13k1a3k3k+1=ln(1a)3+13a.k1a3k+13k+1g(a)=k1a3k+13k+1g(a)=k1a3k=a31a3g(a)=0ax31x3dx=0a(1+11x3)dx=a+0adx(1x)(1+x+x2)=a+0a13{1(1x)+x+21+x+x2}dx=a+130a(11x+x+121+x+x2+32.1(x+12)2+34)dx=a+ln(1a)3+16ln(1+a+a2)+230adx(2x+13)2+1g(a)=a+ln(1a)3+ln(1+a+a2)6+13{arctan(2a+13)π6}f(a)=ln(1a)3+13ag(a)=13+13a(aln(1a)+ln(1a))+ln(1+a+a2)18a+13a3{arctan(2a+13)π6}

Commented by msup trace by abdo last updated on 15/Jan/20

thank you sir.

thankyousir.

Commented by mind is power last updated on 15/Jan/20

y′re welcom

yrewelcom

Terms of Service

Privacy Policy

Contact: info@tinkutara.com