Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 79107 by mathmax by abdo last updated on 22/Jan/20

calculate f(a) =∫_0 ^∞  e^(−(x^2  +(a/x^2 ))) dx with a>0

calculatef(a)=0e(x2+ax2)dxwitha>0

Commented by mathmax by abdo last updated on 23/Jan/20

f(a)=∫_0 ^∞  e^(−(x^2  +(a/x^2 ))) dx  changement x=(1/t) give  f(a)=−∫_0 ^∞   e^(−((1/t^2 )+at^2 )) (((−dt)/t^2 )) =∫_0 ^∞   (e^(−(at^2  +(1/t^2 ))) /t^2 )dt  ⇒f^′ (a) =−∫_0 ^∞   e^(−(at^2  +(1/t^2 ))) dt =_((√a)t =x)  −(1/(√a))∫_0 ^∞  e^(−{x^2 +(a/x^2 )})  dx  =−(1/(√a))f(a)⇒((f^′ (a))/(f(a))) =−(1/(√a)) ⇒ln∣f(a)∣=−2(√a) +c  f>0 ⇒f(a) =k e^(−2(√a))   k=f(0) =∫_0 ^∞  e^(−x^2 ) dx =((√π)/2) ⇒f(x) =((√π)/2) e^(−2(√a))

f(a)=0e(x2+ax2)dxchangementx=1tgivef(a)=0e(1t2+at2)(dtt2)=0e(at2+1t2)t2dtf(a)=0e(at2+1t2)dt=at=x1a0e{x2+ax2}dx=1af(a)f(a)f(a)=1alnf(a)∣=2a+cf>0f(a)=ke2ak=f(0)=0ex2dx=π2f(x)=π2e2a

Answered by ~blr237~ last updated on 22/Jan/20

let state u=(1/x)  then dx=−(du/u^2 )   f(a)=∫_0 ^∞ e^(−((1/u^2 )+au^2 )) (du/u^2 )   f∈C^(1 )  cause for all a>0 ∣e^(−(x^2 +(a/x^2 ))) ∣≤e^(−x^2 )   and ∫_(0 ) ^∞ e^(−x^2 ) dx=((√π)/2)  so converges  Now we can write   (df/da)=−∫_0 ^∞ e^(−(au^2 +(1/u^2 ))) du       =−(1/(√a))∫_0 ^∞ e^(−[(u(√a))^2 +(a/((u(√a))^2 ))]) d(u(√a))      =−(1/(√a)) ∫_(0 ) ^∞ e^(−(v^2 +(a/v^2 ))) dv     with v=u(√a)      So   (df/da)=−(1/(√a)) f(a)  Then  ln∣f(a)∣=−2(√a) +c ⇒f(a)=ke^(−2(√a))   with k>0  we know that lim_(a→0)  f(a)=k=((√π)/2)   Finaly    f(a)=((√π)/2) e^(−2(√a))

letstateu=1xthendx=duu2f(a)=0e(1u2+au2)duu2fC1causeforalla>0e(x2+ax2)∣⩽ex2and0ex2dx=π2soconvergesNowwecanwritedfda=0e(au2+1u2)du=1a0e[(ua)2+a(ua)2]d(ua)=1a0e(v2+av2)dvwithv=uaSodfda=1af(a)Thenlnf(a)∣=2a+cf(a)=ke2awithk>0weknowthatlima0f(a)=k=π2Finalyf(a)=π2e2a

Commented by msup trace by abdo last updated on 22/Jan/20

thanks sir

thankssir

Answered by mind is power last updated on 22/Jan/20

on pose x=a^(1/4) u  ⇒f(a)=∫_0 ^(+∞) a^(1/4) e^(−(√a)(x^2 +(1/x^2 ))) dx  x=(1/y)⇒  =a^(1/4) ∫_0 ^(+∞) e^(−(√a)(y^2 +(1/y^2 ))) (dy/y^2 )  ⇒2f(a)a^(−(1/4)) =∫_0 ^(+∞) (1+(1/y^2 ))e^(−(√a)(y−(1/y))^2 −2(√a))   ⇒2f(a)a^(−(1/4)) e^(2(√a)) =∫_0 ^(+∞) (1+(1/y^2 ))e^(−(√a)(y−(1/y))^2 ) dy  =∫_0 ^1 (1+(1/y^2 ))e^(−(√a)(y−(1/y))^2 ) +∫_1 ^(+∞) (1+(1/y^2 ))e^(−(√a)(y−(1/y))^2 ) dy  u=y−(1/y),in first t=(1/y)in 2nd⇒  ⇒∫_0 ^(+∞)  e^(−(√a)u^2 ) du +∫_0 ^1 (1+(1/t^2 ))e^(−(√a)(t−(1/t))^2 ) dt  =2∫_0 ^(+∞) e^(−(√a)(u^2 )) du,w=a^(1/4) u⇒  =2∫_0 ^(+∞) e^(−w^2 ) (dw/a^(1/4) )=((√π)/a^(1/4) )  ⇒2f(a)a^(−(1/4)) e^(2(√a)) =((√π)/a^(1/4) )⇒f(a)=((√π)/(2e^(2(√a)) ))

onposex=a14uf(a)=0+a14ea(x2+1x2)dxx=1y=a140+ea(y2+1y2)dyy22f(a)a14=0+(1+1y2)ea(y1y)22a2f(a)a14e2a=0+(1+1y2)ea(y1y)2dy=01(1+1y2)ea(y1y)2+1+(1+1y2)ea(y1y)2dyu=y1y,infirstt=1yin2nd0+eau2du+01(1+1t2)ea(t1t)2dt=20+ea(u2)du,w=a14u=20+ew2dwa14=πa142f(a)a14e2a=πa14f(a)=π2e2a

Commented by msup trace by abdo last updated on 22/Jan/20

thanks sir.

thankssir.

Commented by mind is power last updated on 22/Jan/20

y′re welcom

yrewelcom

Terms of Service

Privacy Policy

Contact: info@tinkutara.com