Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 35687 by prof Abdo imad last updated on 22/May/18

calculate f(a)=∫_0 ^π      (dx/(1−a cosx))  a from R .  2) application  calculate  ∫_0 ^π     (dx/(1−2cosx))

calculatef(a)=0πdx1acosxafromR.2)applicationcalculate0πdx12cosx

Commented by prof Abdo imad last updated on 22/May/18

vhangement tan((x/2))=t give  f(a) = ∫_0 ^∞       (1/(1−a ((1−t^2 )/(1+t^2 ))))  ((2dt)/(1+t^2 ))  = ∫_0 ^∞        ((2dt)/(1+t^2  −a(1−t^2 ))) = ∫_0 ^∞     ((2dt)/(1−a  +(1+a)t^2 ))  = (1/(1−a))∫_0 ^∞      ((2dt)/(1+((1+a)/(1−a))t^2 ))  case 1  ((1+a)/(1−a))>0  and a≠1  ⇒ (((1+a)(1−a))/((1−a)^2 ))>0 ⇒   1−a^2 >0 ⇒ ∣a∣<1   we get  f(a) = (2/(1−a))∫_0 ^∞     (dt/(1+((√((1+a)/(1−a)))t)^2 ))  =_(u= (√((1+a)/(1−a)))t)   (2/(1−a))∫_0 ^∞     (1/(1+u^2 )) ((√(1−a))/(√(1+a))) du  =(2/((√(1−a))(√(1+a)))) .(π/2) =  (π/(√(1−a^2 )))  case2  ((1+a)/(1−a))<0  ⇒ ((1+a)/(a−1))>0 and  f(a) = (1/(1−a))∫_0 ^∞    ((2dt)/(1  −((a+1)/(a−1))t^2 ))  =_((√((a+1)/(a−1))) t =u)   (2/(1−a)) ∫_0 ^∞      (1/(1 −u^2 )) ((√(a−1))/(√(a+1))) du  = −(2/(√(a^2  −1))) ∫_0 ^∞     (du/(1−u^2 ))  = (1/(√(a^2  −1))) ∫_0 ^∞ { (1/(u−1)) −(1/(u+1))}du  = (1/(√(a^2 −1))) [ln∣((u−1)/(u+1))∣]_0 ^(+∞)  =0 .

vhangementtan(x2)=tgivef(a)=011a1t21+t22dt1+t2=02dt1+t2a(1t2)=02dt1a+(1+a)t2=11a02dt1+1+a1at2case11+a1a>0anda1(1+a)(1a)(1a)2>01a2>0a∣<1wegetf(a)=21a0dt1+(1+a1at)2=u=1+a1at21a011+u21a1+adu=21a1+a.π2=π1a2case21+a1a<01+aa1>0andf(a)=11a02dt1a+1a1t2=a+1a1t=u21a011u2a1a+1du=2a210du1u2=1a210{1u11u+1}du=1a21[lnu1u+1]0+=0.

Commented by prof Abdo imad last updated on 22/May/18

2)we have a =2 and ∣a∣>1 ⇒   ∫_0 ^π       (dx/(1−2cosx)) =0

2)wehavea=2anda∣>10πdx12cosx=0

Answered by tanmay.chaudhury50@gmail.com last updated on 22/May/18

∫_0 ^Π (dx/(1−acosx))  =(1/a)∫_0 ^Π (dx/((1/a)−cosx))  let k=1/a  =k∫_0 ^Π (dx/(k−((1−tan^2 ((x/2)))/(1+tan^2 ((x/2))))))  =k∫_0 ^Π (((1+tan^2 (x/2)))/(k+ktan^2 (x/2)−1+tan^2 (x/2)))dx  t=tan(x/2) dt=sec^2 (x/2)×(1/2)dx  =k∫_0 ^∞ ((2dt)/((k−1)+(k+1)t^2 ))  =2k∫_0 ^∞ (dt/((k+1)(((k−1)/(k+1))+t^2 )))  =((2k)/(k+1))∫_0 ^∞ (dt/(((k−1)/(k+1))+t^2 ))  =((2k)/(k+1))×(1/(√((k−1)/(k+1))))×∣tan^(−1) ((t/(√((k−1)/(k+1))))  )∣_0 ^∞   =((2k)/(k+1))×(((√(k+1)) )/(√(k−1)))×((Π/2))  =(2/(1+(1/k)))×((√(1+(1/k)))/(√(1−(1/k) )))×((Π/2))    =(2/(1+a))×((√(1+a))/(√(1−a)))×((Π/2))

0Πdx1acosx=1a0Πdx1acosxletk=1/a=k0Πdxk1tan2(x2)1+tan2(x2)=k0Π(1+tan2x2)k+ktan2x21+tan2x2dxt=tanx2dt=sec2x2×12dx=k02dt(k1)+(k+1)t2=2k0dt(k+1)(k1k+1+t2)=2kk+10dtk1k+1+t2=2kk+1×1k1k+1×tan1(tk1k+1)0=2kk+1×k+1k1×(Π2)=21+1k×1+1k11k×(Π2)=21+a×1+a1a×(Π2)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com