Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 143082 by Mathspace last updated on 09/Jun/21

calculate f(a,b)=∫_0 ^∞  (e^(−ax^2 ) /(x^2  +b^2 ))dx  with a>0 and b>0

calculatef(a,b)=0eax2x2+b2dxwitha>0andb>0

Answered by Dwaipayan Shikari last updated on 09/Jun/21

=∫_0 ^∞ e^(−ax^2 ) ∫_0 ^∞ e^(−t(x^2 +b)) dxdt  =((√π)/2)∫_0 ^∞ (e^(−tb) /( (√(t+a))))dt          t+a=u^2   =(√π)e^(ab) ∫_(√a) ^∞ e^(−u^2 ) du  =(√π)e^(ab) (((√π)/2)−((√π)/2)erf((√a)))=(π/2)e^(ab) (erfc((√a)))

=0eax20et(x2+b)dxdt=π20etbt+adtt+a=u2=πeabaeu2du=πeab(π2π2erf(a))=π2eab(erfc(a))

Answered by mathmax by abdo last updated on 10/Jun/21

f(a,b)=∫_0 ^∞  (e^(−ax^2 ) /(x^2  +b^2 ))dx =∫_0 ^∞ (∫_0 ^∞ e^(−(x^2 +b^2 )t) dt)e^(−ax^2 ) dx  =∫_0 ^∞ (∫_0 ^∞ e^(−(t+a)x^2 ) dx)e^(−b^2 t) dt [but  ∫_0 ^∞  e^(−(t+a)x^2 ) dx =_((√(t+a))x=y)   ∫_(√a) ^∞  e^(−y^2 ) (dy/( (√(t+a)))) ⇒  f(a,b)=∫_(√a) ^∞  e^(−y^2 ) dy.∫_0 ^∞  (e^(−b^2 t) /( (√(t+a))))dt   (let λ_0 =∫_(√a) ^∞  e^(−y^2 ) dy)  =_(t+a=z^2 )   λ_0 ∫_(√a) ^∞  (e^(−b^2 (z^2 −a)) /z)(2z)dz =2λ_0 e^(ab^2 ) ∫_(√a) ^∞   e^(−b^2 z^2 ) dz  =_(bz=u)    2λ_0 e^(ab^2 ) ∫_(b(√a)) ^∞  e^(−u^2 ) (du/b)  =((2λ_0 )/b)e^(ab^2 ) ∫_(b(√a)) ^∞  e^(−u^2 ) du

f(a,b)=0eax2x2+b2dx=0(0e(x2+b2)tdt)eax2dx=0(0e(t+a)x2dx)eb2tdt[but0e(t+a)x2dx=t+ax=yaey2dyt+af(a,b)=aey2dy.0eb2tt+adt(letλ0=aey2dy)=t+a=z2λ0aeb2(z2a)z(2z)dz=2λ0eab2aeb2z2dz=bz=u2λ0eab2baeu2dub=2λ0beab2baeu2du

Terms of Service

Privacy Policy

Contact: info@tinkutara.com