Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 54011 by maxmathsup by imad last updated on 27/Jan/19

calculate f(a) =∫    (dx/((√(1+ax))−(√(1−ax))))  with a>0 .  2) calculate  U_n =∫_(−(1/(na))) ^(1/(na))   (dx/((√(1+ax))−(√(1−ax))))  with n from N and n>1  find lim_(n→+∞)  U_n    and study the convergence of Σ U_n

calculatef(a)=dx1+ax1axwitha>0.2)calculateUn=1na1nadx1+ax1axwithnfromNandn>1findlimn+UnandstudytheconvergenceofΣUn

Commented by maxmathsup by imad last updated on 28/Jan/19

1) we have f(a) =_(ax =t)   ∫     (dt/(a((√(1+t))−(√(1−t)))))  ⇒  af(a) =∫  (((√(1+t))+(√(1−t)))/(2t)) dt = (1/2) ∫ ((√(1+t))/t)dt +(1/2)∫ ((√(1−t))/t) dt ⇒  2af(a) = ∫ ((√(1+t))/t) dt +∫ ((√(1−t))/t) dt  but  ∫ ((√(1+t))/t)dt  =_(1+t=u^2 )     ∫   (u/(u^2 −1)) (2u)du =2 ∫ (u^2 /(u^2 −1)) du  =2 ∫  ((u^2 −1+1)/(u^2 −1)) =2u +2 ∫  (du/(u^2 −1)) =2u  + ∫ ((1/(1−u)) +(1/(1+u)))du  =2u +ln∣((1+u)/(1−u))∣ +c_0   =2(√(1+t))+ln∣((1+(√(1+t)))/(1−(√(1−t))))∣ +c_0   =2 (√(1+ax)) +ln∣((1+(√(1+ax)))/(1−(√(1−ax))))∣  +c_0    also we have   ∫ ((√(1−t))/t) dt =_(1−t =u^2 )     ∫  (u/(1−u^2 )) (−2u)du = 2 ∫  (u^2 /(u^2  −1)) ⇒  2af(a) =2 ∫ ((√(1+t))/t) dt ⇒f(a) =(1/a){2(√(1+ax)) +ln∣((1+(√(1+ax)))/(1−(√(1−ax))))∣} .  f(a) =(1/a){2(√(1+ax))+ln∣((1+(√(1+ax)))/(1−(√(1−ax))))∣} +C .

1)wehavef(a)=ax=tdta(1+t1t)af(a)=1+t+1t2tdt=121+ttdt+121ttdt2af(a)=1+ttdt+1ttdtbut1+ttdt=1+t=u2uu21(2u)du=2u2u21du=2u21+1u21=2u+2duu21=2u+(11u+11+u)du=2u+ln1+u1u+c0=21+t+ln1+1+t11t+c0=21+ax+ln1+1+ax11ax+c0alsowehave1ttdt=1t=u2u1u2(2u)du=2u2u212af(a)=21+ttdtf(a)=1a{21+ax+ln1+1+ax11ax}.f(a)=1a{21+ax+ln1+1+ax11ax}+C.

Commented by maxmathsup by imad last updated on 28/Jan/19

2) we have U_n =∫_(−(1/(na))) ^(1/(na))    (dx/((√(1+ax))−(√(1−ax)))) =2lim_(ξ→0)  ∫_ξ ^(1/(na))   (dx/((√(1+ax))−(√(1−ax))))  but ∫_ξ ^(1/(na))     (dx/((√(1+ax))−(√(1−ax)))) =[(1/a)(2(√(1+ax))+ln∣((1+(√(1+ax)))/(1−(√(1−ax))))∣)]_(x=ξ) ^(1/(na))   =(1/a){2(√(1+(1/n)))+ln∣((1+(√(1+(1/n))))/(1−(√(1−(1/n)))))∣−2(√(1+aξ))−ln∣((1+(√(1+aξ)))/(1−(√(1−aξ))))∣}  but we cant find lim U_n  from this quantity  be continued...

2)wehaveUn=1na1nadx1+ax1ax=2limξ0ξ1nadx1+ax1axbutξ1nadx1+ax1ax=[1a(21+ax+ln1+1+ax11ax)]x=ξ1na=1a{21+1n+ln1+1+1n111n21+aξln1+1+aξ11aξ}butwecantfindlimUnfromthisquantitybecontinued...

Answered by tanmay.chaudhury50@gmail.com last updated on 28/Jan/19

∫(((√(1+ax)) +(√(1−ax)))/(2ax))dx  ∫((√(1+ax))/(2ax))dx+∫((√(1−ax))/(2ax))dx  t_1 ^2 =1+ax   2t_1 dt=adx  t_2 ^2 =1−ax  2t_2 dt=−adx  ∫((t_1 ×2t_1 dt)/(2a(t_1 ^2 −1)))+∫((t_2 ×−2t_2 )/(2a×(1−t_1 ^2 )))dt_2   (1/a)∫((t_1 ^2 −1+1)/(t_1 ^2 −1))dt_1 +(1/a)∫((1−t_2 ^2 −1)/(1−t_2 ^2 ))dt_2   (1/a)[∫dt_1 +∫(dt_1 /(t_2 ^2 −1))+∫dt_2 −∫(dt_2 /(1−t_2 ^2 ))]  now use formula...

1+ax+1ax2axdx1+ax2axdx+1ax2axdxt12=1+ax2t1dt=adxt22=1ax2t2dt=adxt1×2t1dt2a(t121)+t2×2t22a×(1t12)dt21at121+1t121dt1+1a1t2211t22dt21a[dt1+dt1t221+dt2dt21t22]nowuseformula...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com