All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 38469 by maxmathsup by imad last updated on 25/Jun/18
calculatef(a)=∫−∞+∞sin(ax)x2+x+1dx2)findthevalueof∫−∞+∞sin(3x)x2+x+1dx
Commented by math khazana by abdo last updated on 28/Jun/18
1)f(a)=Im(∫−∞+∞eiaxx2+x+1dx)letconsiderthecomplexfunctionφ(z)=eiazz2+z+1thepolesofφarej=ei2π3andj−=e−i2π3j=−12+i32∫−∞+∞φ(z)dz=2iπRes(φ,j)butφ(z)=eiaz(z−j)(z−j−)⇒Res(φ,j)=eiajj−j−=eia(−12+i32)2i32=e−a32{cos(a2)−isin(a2)}i3⇒∫−∞+∞φ(z)dz=2iπe−a32{cos(a2)−isin(a2)}i3=2π3e−a32{cos(a2)−isin(a2)}⇒f(a)=Im(∫−∞+∞φ(z)dz)=−2π3e−a32sin(a2)2)∫−∞+∞sin(3x)x2+x+1dx=f(3)=−2π3e−332sin(32).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com