Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 38470 by maxmathsup by imad last updated on 25/Jun/18

calculate f(t)=∫_0 ^∞   ((cos(tx))/((1+tx^2 )^2 )) dx with t≥0  2) find the values of ∫_0 ^∞   ((cos(2x))/((1+2x^2 )^2 ))dx  and ∫_0 ^∞    ((cosx)/((2+x^2 )^2 ))dx

calculatef(t)=0cos(tx)(1+tx2)2dxwitht02)findthevaluesof0cos(2x)(1+2x2)2dxand0cosx(2+x2)2dx

Commented by math khazana by abdo last updated on 26/Jun/18

t>0

t>0

Commented by math khazana by abdo last updated on 27/Jun/18

we have 2f(x)=∫_(−∞) ^(+∞)   ((cos(tx))/((1+tx^2 )^2 ))dx  =Re( ∫_(−∞) ^(+∞)    (e^(itx) /((1+tx^2 )^2 ))dx) let consider  ϕ(z) = (e^(itz) /((tz^2  +1)^2 )) we have   ϕ(z)=  (e^(itz) /(t^2 (z^2  +(1/t))^2 )) = (e^(itz) /(t^2 (z−(i/(√t)))^2 (z+(i/(√t)))^2 ))  the poles of ϕ are (i/(√t)) and ((−i)/(√t)) (doubles)  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,(i/(√t)))  but  Res(ϕ,(i/(√t)))=lim_(z→(i/(√t)))     (1/((2−1)!)){ (z−(i/(√t)))^2 ϕ(z)}^((1))   =lim_(z→(i/(√t)))     (1/t^2 ){   (e^(itz) /((z+(i/(√t)))^2 ))}^((1))   =lim_(z→(i/(√t)))  (1/t^2 ){  ((it e^(itz) (z+(i/(√t)))^2  −2(z+(i/(√t)))e^(itz) )/((z+(i/(√t)))^4 ))}  =lim_(z→(i/(√t)))    (1/t^2 ){  ((it e^(itz) (z+(i/(√t))) −2 e^(itz) )/((z+(i/(√t)))^3 ))}  =(1/t^2 )((it e^(it(i/(√t))) (((2i)/(√t)))−2 e^(it((i/(√t)))) )/((((2i)/(√t)))^3 ))=(1/t^2 ) ((−2(√t)e^(−(√t))  −2 e^(−(√t)) )/((−8i)/(t(√t))))  =((t(√t))/t^2 ) (((1+(√t))e^(−(√t)) )/(4i)) =((√t)/(4ti))(1+(√t))e^(−(√t))   =(((t+(√t))e^(−(√t)) )/(4ti)) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ (((t+(√t))e^(−(√t)) )/(4it)) =(π/(2t)) (t+(√t))e^(−(√t))   2f(x)= Re( ∫_(−∞) ^(+∞) ϕ(z)dz) ⇒  f(x)= (π/(4t))(t+(√t))e^(−(√t))         (t>0)  2)  ∫_0 ^∞    ((cos(2x))/((1+2x^2 )^2 ))dx=f(2) =(π/8)(2+(√2))e^(−(√2))

wehave2f(x)=+cos(tx)(1+tx2)2dx=Re(+eitx(1+tx2)2dx)letconsiderφ(z)=eitz(tz2+1)2wehaveφ(z)=eitzt2(z2+1t)2=eitzt2(zit)2(z+it)2thepolesofφareitandit(doubles)+φ(z)dz=2iπRes(φ,it)butRes(φ,it)=limzit1(21)!{(zit)2φ(z)}(1)=limzit1t2{eitz(z+it)2}(1)=limzit1t2{iteitz(z+it)22(z+it)eitz(z+it)4}=limzit1t2{iteitz(z+it)2eitz(z+it)3}=1t2iteitit(2it)2eit(it)(2it)3=1t22tet2et8itt=ttt2(1+t)et4i=t4ti(1+t)et=(t+t)et4ti+φ(z)dz=2iπ(t+t)et4it=π2t(t+t)et2f(x)=Re(+φ(z)dz)f(x)=π4t(t+t)et(t>0)2)0cos(2x)(1+2x2)2dx=f(2)=π8(2+2)e2

Commented by math khazana by abdo last updated on 27/Jun/18

let calculate I =∫_0 ^∞    ((cosx)/((2+x^2 )^2 ))dx  2I =∫_(−∞) ^(+∞)   ((cosx)/((2+x^2 )^2 ))dx=Re( ∫_(−∞) ^(+∞)   (e^(ix) /((x^2  +2)^2 ))dx)  let ϕ(z)= (e^(iz) /((z^2  +2)^2 ))  ϕ(z)= (e^(iz) /((z−i(√2))^2 (z+i(√2))^2 )) so the polesof ϕ are  i(√2) and −i(√2) (doubles)  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,i(√2))  Res(ϕ,i(√2))=lim_(z→i(√2))   (1/((2−1)!)){ (z−i(√2))^2 ϕ(z)}^((1))   =lim_(z→i(√2))    {  (e^(iz) /((z+i(√2))^2 ))}^((1))   =lim_(z→i(√2))   ((i e^(iz) (z+i(√2))^2  −2(z+i(√2))e^(iz) )/((z+i(√2))^4 ))  =lim_(z→i(√2))     ((i e^(iz) (z+i(√2)) −2 e^(iz) )/((z+i(√2))^3 ))  =((i e^(i(i(√2))) (2i(√2)) −2 e^(i(i(√2))) )/((2i(√2))^3 ))  = ((−2(√2) e^(−(√2))   −2 e^(−(√2)) )/(−8i(2(√2)))) =(((1+(√2))e^(−(√2)) )/(8i(√2)))  ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ (((1+(√2))e^(−(√2)) )/(8i(√2)))  = (π/(4(√2)))(1+(√2))e^(−(√2))   2I =Re( ∫_(−∞) ^(+∞)  ϕ(z)dz) ⇒  I = (π/(8(√2)))(1+(√2))e^(−(√2)) .

letcalculateI=0cosx(2+x2)2dx2I=+cosx(2+x2)2dx=Re(+eix(x2+2)2dx)letφ(z)=eiz(z2+2)2φ(z)=eiz(zi2)2(z+i2)2sothepolesofφarei2andi2(doubles)+φ(z)dz=2iπRes(φ,i2)Res(φ,i2)=limzi21(21)!{(zi2)2φ(z)}(1)=limzi2{eiz(z+i2)2}(1)=limzi2ieiz(z+i2)22(z+i2)eiz(z+i2)4=limzi2ieiz(z+i2)2eiz(z+i2)3=iei(i2)(2i2)2ei(i2)(2i2)3=22e22e28i(22)=(1+2)e28i2+φ(z)dz=2iπ(1+2)e28i2=π42(1+2)e22I=Re(+φ(z)dz)I=π82(1+2)e2.

Commented by abdo.msup.com last updated on 27/Jun/18

f(t)=(π/(4t))(t+(√t))e^(−(√t))

f(t)=π4t(t+t)et

Terms of Service

Privacy Policy

Contact: info@tinkutara.com