All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 72988 by mathmax by abdo last updated on 05/Nov/19
calculatef(x)=∫0∞e−xt24+t2dtwithx>0
Commented by mathmax by abdo last updated on 05/Nov/19
wehavef(x)=∫0∞e−x(t2+4−4)t2+4dt=e4x∫0∞e−x(t2+4)t2+4dt=e4xw(x)withw(x)=∫0∞e−x(t2+4)t2+4dt⇒w′(x)=−∫0+∞e−x(t2+4)dt=−e−4x∫0∞e−(xt)2dt=xt=u−e−4x∫0∞e−u2dux=−e−4xx×π2⇒w(x)=−π2∫0xe−4uudu+c=u=z−π2∫0xe−4z2z(2z)dz+c=−π∫0xe−4z2dz+c⇒f(x)=ce4x−πe4x∫0xe−4z2dzc=limx→0f(x)=∫0∞dtt2+4=t=2u∫0∞2du4(1+u2)=12π2=π4⇒f(x)=π4e4x−πe4x∫0xe−4z2dz
Answered by mind is power last updated on 05/Nov/19
f′(x)=∫0+∞−t2e−xt24+t2=∫−e−xt2+4∫0+∞e−xt24+t2dt=⇒f′(x)=4f(x)−1x∫0+∞e−(tx)2.xdt⇒f′(x)=4f(x)−1x.∫0+∞e−u2du=4f(x)−12x.π2f′(x)−4f(x)+12x.π2=0f(x)=ke4x⇒k′(x)=−e−4x2xπ2=⇒k(x)=−π22∫e−4x2xdxerf(x)=∫0xe−t2dtx=u⇒k(x)=−π22∫e−4u2du=−π42∫e−w2dw=−π42erf(w)=π42erf(2u)=−π42erf(2x)+c⇒f(x)=ce−4x−π42erf(2x)e−4xf(0)=∫0+∞14+t2=[12.arctan(t2)]=π4⇒c=π4f(x)=π4e−4x−π42erf(2x)e−4x
Terms of Service
Privacy Policy
Contact: info@tinkutara.com