Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 72988 by mathmax by abdo last updated on 05/Nov/19

calculate f(x)=∫_0 ^∞     (e^(−xt^2 ) /(4+t^2 ))dt   with x>0

calculatef(x)=0ext24+t2dtwithx>0

Commented by mathmax by abdo last updated on 05/Nov/19

we have f(x)=∫_0 ^∞  (e^(−x(t^2 +4−4)) /(t^2  +4))dt =e^(4x) ∫_0 ^∞   (e^(−x(t^2 +4)) /(t^2  +4))dt  =e^(4x) w(x) with w(x)=∫_0 ^∞  (e^(−x(t^2  +4)) /(t^2  +4))dt ⇒  w^′ (x)=−∫_0 ^(+∞)   e^(−x(t^2 +4)) dt =−e^(−4x)  ∫_0 ^∞  e^(−((√x)t)^2 ) dt  =_((√x)t =u)   −  e^(−4x) ∫_0 ^∞   e^(−u^2 ) (du/(√x)) =−(e^(−4x) /(√x))×((√π)/2) ⇒w(x)=−((√π)/2)∫_0 ^x   (e^(−4u) /(√u))du +c  =_((√u)=z) −   ((√π)/2) ∫_0 ^(√x)   (e^(−4z^2 ) /z)(2z)dz+c =−(√π)∫_0 ^(√x)  e^(−4z^2 ) dz +c⇒  f(x)=c e^(4x)  −(√π)e^(4x)  ∫_0 ^(√x)  e^(−4z^2 ) dz  c=lim_(x→0) f(x) =∫_0 ^∞   (dt/(t^2  +4)) =_(t=2u)   ∫_0 ^∞    ((2du)/(4(1+u^2 ))) =(1/2)(π/2)=(π/4) ⇒  f(x)=(π/4)e^(4x)  −(√π)e^(4x)  ∫_0 ^(√x)  e^(−4z^2 ) dz

wehavef(x)=0ex(t2+44)t2+4dt=e4x0ex(t2+4)t2+4dt=e4xw(x)withw(x)=0ex(t2+4)t2+4dtw(x)=0+ex(t2+4)dt=e4x0e(xt)2dt=xt=ue4x0eu2dux=e4xx×π2w(x)=π20xe4uudu+c=u=zπ20xe4z2z(2z)dz+c=π0xe4z2dz+cf(x)=ce4xπe4x0xe4z2dzc=limx0f(x)=0dtt2+4=t=2u02du4(1+u2)=12π2=π4f(x)=π4e4xπe4x0xe4z2dz

Answered by mind is power last updated on 05/Nov/19

f′(x)=∫_0 ^(+∞) ((−t^2 e^(−xt^2 ) )/(4+t^2 ))=∫−e^(−xt^2 ) +4∫_0 ^(+∞) (e^(−xt^2 ) /(4+t^2 ))dt  =⇒f′(x)=4f(x)−(1/(√x))∫_0 ^(+∞) e^(−(t(√x))^2 ) .(√x)dt  ⇒f′(x)=4f(x)−(1/(√x)).∫_0 ^(+∞) e^(−u^2 ) du=4f(x)−(1/(2(√x))).(√(π/2))  f′(x)−4f(x)+(1/(2(√x))).(√(π/2))=0  f(x)=ke^(4x)   ⇒k′(x)=−(e^(−4x) /(2(√x)))(√(π/2))  =⇒k(x)=−((√π)/(2(√2)))∫(e^(−4x) /(2(√x)))dx  erf(x)=∫_0 ^x e^(−t^2 ) dt  (√x)=u⇒k(x)=−((√π)/(2(√2)))∫e^(−4u^2 ) du=−((√π)/(4(√2)))∫e^(−w^2 ) dw=−((√π)/(4(√2)))erf(w)  =((√π)/(4(√2)))erf(2u)=−((√π)/(4(√2)))erf(2(√x))+c  ⇒f(x)=ce^(−4x) −((√π)/(4(√2)))erf(2(√x))e^(−4x)   f(0)=∫_0 ^(+∞) (1/(4+t^2 ))=[(1/2).arctan((t/2))]=(π/4)  ⇒c=(π/4)  f(x)=(π/4)e^(−4x) −((√π)/(4(√2)))erf(2(√x))e^(−4x)

f(x)=0+t2ext24+t2=ext2+40+ext24+t2dt=⇒f(x)=4f(x)1x0+e(tx)2.xdtf(x)=4f(x)1x.0+eu2du=4f(x)12x.π2f(x)4f(x)+12x.π2=0f(x)=ke4xk(x)=e4x2xπ2=⇒k(x)=π22e4x2xdxerf(x)=0xet2dtx=uk(x)=π22e4u2du=π42ew2dw=π42erf(w)=π42erf(2u)=π42erf(2x)+cf(x)=ce4xπ42erf(2x)e4xf(0)=0+14+t2=[12.arctan(t2)]=π4c=π4f(x)=π4e4xπ42erf(2x)e4x

Terms of Service

Privacy Policy

Contact: info@tinkutara.com