Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 31097 by abdo imad last updated on 02/Mar/18

calculate interms of a and b the integral  ∫_0 ^∞   ((arctan(bt) −arctan(at))/t)dt  with a and b>0.

calculateintermsofaandbtheintegral0arctan(bt)arctan(at)tdtwithaandb>0.

Commented by abdo imad last updated on 05/Mar/18

let put I=∫_0 ^∞  ((arctan(bt) −arctan(at))/t)dt and for ξ>0  I(ξ)= ∫_0 ^ξ  ((arctan(bt)−arctan(at))/t)dt we have  I=lim_(ξ→+∞)  I(ξ) but I(ξ)=∫_0 ^ξ  ((arctan(bt))/t)dt −∫_0 ^ξ  ((arctan(at))/t)dt  but ∫_0 ^ξ  ((arctan(bt))/t)dt=_(bt=x)  ∫_0 ^(bξ)  ((arctanx)/x)dx  ∫_0 ^ξ  ((artan(at))/t)dt= _(at=x) ∫_0 ^(aξ)  ((arctanx)/x)dx ⇒  I(ξ)=∫_0 ^(bξ)  ((arctanx)/x)dx −∫_0 ^(aξ)  ((arctanx)/x)dx=∫_(aξ) ^(bξ)   ((arctanx)/x)dx  ∃ c∈]aξ,bξ[ / I(ξ)=arctanξ ∫_(aξ) ^(bξ)  (dx/x)=ln((b/a))arctanξ ⇒  lim _(ξ→+∞) I(ξ)=(π/2)ln((b/a)) ⇒ I=(π/2)(ln(b)−ln(a)) .

letputI=0arctan(bt)arctan(at)tdtandforξ>0I(ξ)=0ξarctan(bt)arctan(at)tdtwehaveI=limξ+I(ξ)butI(ξ)=0ξarctan(bt)tdt0ξarctan(at)tdtbut0ξarctan(bt)tdt=bt=x0bξarctanxxdx0ξartan(at)tdt=at=x0aξarctanxxdxI(ξ)=0bξarctanxxdx0aξarctanxxdx=aξbξarctanxxdxc]aξ,bξ[/I(ξ)=arctanξaξbξdxx=ln(ba)arctanξlimξ+I(ξ)=π2ln(ba)I=π2(ln(b)ln(a)).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com