Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 72020 by mathmax by abdo last updated on 23/Oct/19

calculate Σ_(k=0) ^n  C_n ^k  cos(((kπ)/(2n)))

calculatek=0nCnkcos(kπ2n)

Commented by mathmax by abdo last updated on 24/Oct/19

let A_n =Σ_(k=0) ^n  C_n ^k  cos(((kπ)/(2n))) ⇒A_n =Re(Σ_(k=0) ^n  C_n ^k  e^(i((kπ)/(2n))) ) but  Σ_(k=0) ^n  C_n ^k  e^(i((kπ)/(2n))) =Σ_(k=0) ^n  C_n ^k  (e^((iπ)/(2n)) )^k  =(1+e^((iπ)/(2n)) )^n   =(1+cos((π/(2n)))+isin((π/(2n))))^n  ={2cos^2 ((π/(4n)))+2isin((π/(4n)))cos((π/(4n)))}^n   =2^n  cos^n ((π/(4n))){e^((iπ)/(4n)) }^n =2^n  e^((iπ)/4)  cos^n ((π/(4n)))  =2^n  cos^n ((π/(4n))){((√2)/2) +i((√2)/2)} ⇒A_n =(√2)2^(n−1)  cos^n ((π/(4n))) ⇒  A_n =2^(n−(1/2))  cos^n ((π/(4n)))

letAn=k=0nCnkcos(kπ2n)An=Re(k=0nCnkeikπ2n)butk=0nCnkeikπ2n=k=0nCnk(eiπ2n)k=(1+eiπ2n)n=(1+cos(π2n)+isin(π2n))n={2cos2(π4n)+2isin(π4n)cos(π4n)}n=2ncosn(π4n){eiπ4n}n=2neiπ4cosn(π4n)=2ncosn(π4n){22+i22}An=22n1cosn(π4n)An=2n12cosn(π4n)

Answered by mind is power last updated on 23/Oct/19

=ReΣ_(k=0) ^n C_n ^k e^((iπk)/(2n)) =Re(1+e^((iπ)/(2n)) )^n   1+e^((iπ)/(2n)) =e^((iπ)/(4n)) (e^((iπ)/(4n)) +e^((−iπ)/(4n)) )=2cos((π/(4n)))e^(i(π/(4n)))   (1+e^((iπ)/(2n)) )^n =2^n cos^n ((π/(4n)))e^(i(π/4))   =ReΣ_(k=0) ^n C_n ^k e^((iπk)/(2n)) =Re(1+e^((iπ)/(2n)) )^n =2^n cos((π/(4n))).((√2)/2)

=Rek=0nCnkeiπk2n=Re(1+eiπ2n)n1+eiπ2n=eiπ4n(eiπ4n+eiπ4n)=2cos(π4n)eiπ4n(1+eiπ2n)n=2ncosn(π4n)eiπ4=Rek=0nCnkeiπk2n=Re(1+eiπ2n)n=2ncos(π4n).22

Terms of Service

Privacy Policy

Contact: info@tinkutara.com