Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 66483 by ~ À ® @ 237 ~ last updated on 16/Aug/19

 calculate    Σ_(k=2) ^∞   (((−1)^k )/k) ζ(k)       if    ζ(s)=Σ_(n=1) ^∞   (1/n^s )

calculatek=2(1)kkζ(k)ifζ(s)=n=11ns

Commented by mathmax by abdo last updated on 16/Aug/19

let S =Σ_(k=2) ^∞  (((−1)^k )/k)ξ(k) ⇒ S =Σ_(k=2) ^∞  (((−1)^k )/k)(Σ_(n=1) ^∞  (1/n^k ))  =Σ_(n=1) ^∞  (Σ_(k=2) ^∞  (((−1)^k )/(k n^k ))) =Σ_(n=1) ^∞ (Σ_(k=2) ^∞ (1/k)(−(1/n))^k )  let find f(x) =Σ_(k=2) ^∞ (x^k /k) with ∣x∣<1⇒f^′ (x)=Σ_(k=2) ^∞ x^(k−1)  =Σ_(k=1) ^∞ x^k   =x Σ_(k=1) ^∞  x^(k−1) [=x Σ_(k=0) ^∞  x^k  =(x/(1−x)) ⇒f(x) =∫(x/(1−x))dx +c  =−∫(x/(x−1))dx+c =−∫((x−1+1)/(x−1))dx +c =−x+ln∣x−1∣ +c  f(0) =0=c ⇒f(x) =−x+ln∣x−1∣⇒  Σ_(k=2) ^∞ (1/k)(−(1/n))^k  =(1/n)+ln∣(1/n)+1∣ =(1/n) +ln(((n+1)/n))  =(1/n)+ln(n)−ln(n+1) ⇒  S =Σ_(n=1) ^∞  ((1/n) +ln(n)−ln(n+1))=lim_(n→+∞)   S_n  with  S_n =Σ_(k=1) ^n ((1/k)+ln(k)−ln(k+1)) =Σ_(k=1) ^n (1/k) +Σ_(k=1) ^n (ln(k)−ln(k+1))  =H_n −ln(n+1) =H_n −ln(n)−ln(1+(1/n))→γ (n→+∞) ⇒  Σ_(k=2) ^∞  (((−1)^k )/k)ξ(k) =γ       (constant of Euler)

letS=k=2(1)kkξ(k)S=k=2(1)kk(n=11nk)=n=1(k=2(1)kknk)=n=1(k=21k(1n)k)letfindf(x)=k=2xkkwithx∣<1f(x)=k=2xk1=k=1xk=xk=1xk1[=xk=0xk=x1xf(x)=x1xdx+c=xx1dx+c=x1+1x1dx+c=x+lnx1+cf(0)=0=cf(x)=x+lnx1∣⇒k=21k(1n)k=1n+ln1n+1=1n+ln(n+1n)=1n+ln(n)ln(n+1)S=n=1(1n+ln(n)ln(n+1))=limn+SnwithSn=k=1n(1k+ln(k)ln(k+1))=k=1n1k+k=1n(ln(k)ln(k+1))=Hnln(n+1)=Hnln(n)ln(1+1n)γ(n+)k=2(1)kkξ(k)=γ(constantofEuler)

Commented by mathmax by abdo last updated on 17/Aug/19

f(x)=−x−ln∣x−1∣⇒Σ_(k=2) ^∞ (1/k)(−(1/n))^k  =(1/n)−ln((1/n)+1)  =(1/n) −ln(((n+1)/n)) =(1/n)+ln(n)−ln(n+1)...(error of typo)

f(x)=xlnx1∣⇒k=21k(1n)k=1nln(1n+1)=1nln(n+1n)=1n+ln(n)ln(n+1)...(erroroftypo)

Commented by ~ À ® @ 237 ~ last updated on 17/Aug/19

thank you sir

thankyousir

Commented by mathmax by abdo last updated on 17/Aug/19

you are welcome.

youarewelcome.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com