Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 157823 by mnjuly1970 last updated on 28/Oct/21

         calculate :      Ω := Σ_(n=0) ^∞ (( 1)/((4n+1)^( 3) ))   = ?

calculate:Ω:=n=01(4n+1)3=?

Answered by qaz last updated on 28/Oct/21

Σ_(n=0) ^∞ (1/((4n+1)^3 ))  =(1/2)Σ_(n=0) ^∞ ∫_0 ^1 x^(4n) ln^2 xdx  =(1/2)∫_0 ^1 ((ln^2 x)/(1−x^4 ))dx  =(1/4)∫_0 ^1 ((1/(1−x^2 ))+(1/(1+x^2 )))ln^2 xdx  =(1/4)Σ_(n=0) ^∞ ∫_0 ^1 (1+(−1)^n )x^(2n) ln^2 xdx  =(1/2)Σ_(n=0) ^∞ ((1+(−1)^n )/((2n+1)^3 ))  =(1/2)(1−2^(−3) )ζ(3)+(1/2)β(3)  =(7/(16))ζ(3)+(π^3 /(64))

n=01(4n+1)3=12n=001x4nln2xdx=1201ln2x1x4dx=1401(11x2+11+x2)ln2xdx=14n=001(1+(1)n)x2nln2xdx=12n=01+(1)n(2n+1)3=12(123)ζ(3)+12β(3)=716ζ(3)+π364

Commented by mnjuly1970 last updated on 28/Oct/21

 God bless you sir qaz very nice solution

Godblessyousirqazverynicesolution

Terms of Service

Privacy Policy

Contact: info@tinkutara.com