Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 67559 by Abdo msup. last updated on 28/Aug/19

calculate  Σ_(n=0) ^∞   (1/(n^(2 ) +1))  and Σ_(n=0) ^∞  (((−1)^n )/(n^2  +1))

calculaten=01n2+1andn=0(1)nn2+1

Commented by ~ À ® @ 237 ~ last updated on 28/Aug/19

let named  f(a)=Σ_(n=0) ^∞  (1/(n^2 +a^2 ))  and  g(a)=Σ_(n=0) ^∞   (((−1)^n )/(n^2 +a^2 ))    f(a)=(1/2)Σ_(−∞) ^∞   (1/(n^2 +a^2 )) =−(1/2)[Res(A(z),ia)+Res(A(z),−ia)]   with  A(z)=((πcot(πz))/(z^2 +1))    (that formula comes from the Residu theorem...  Res(A(z),ia)=((πcot(iπa))/(2ia))= −((πcoth(πa))/(2a))   cause  tanx=−ith(ix)⇒cot(x)=icoth(ix)  Res(A(z),−ia)=((πcot(−iπa))/(−2ia)) =−((πcoth(πa))/(2a))   So  f(a)=(π/(2a)) coth(πa)  g(a)=(1/2)Σ_(−∞) ^∞  (((−1)^n )/(n^2 +a^2 )) =−(1/2) [Res(B,ia)+Res(B,−ia)]      with B(z)=  ((πcsc(πz))/(z^2 +1))=(π/((z^2 +1)sin(πz)))   Res(B,ia)=(π/(2iasin(iπa))) = (π/(2ia(((e^(−πa) −e^(πa) )/(2i)))))=(π/(−2ash(πa)))  Res(B,−ia)=(π/(−2iasin(−iπa)))=(π/(−2ash(πa)))   So  g(a)=(π/(2ash(πa)))

letnamedf(a)=n=01n2+a2andg(a)=n=0(1)nn2+a2f(a)=121n2+a2=12[Res(A(z),ia)+Res(A(z),ia)]withA(z)=πcot(πz)z2+1(thatformulacomesfromtheResidutheorem...Res(A(z),ia)=πcot(iπa)2ia=πcoth(πa)2acausetanx=ith(ix)cot(x)=icoth(ix)Res(A(z),ia)=πcot(iπa)2ia=πcoth(πa)2aSof(a)=π2acoth(πa)g(a)=12(1)nn2+a2=12[Res(B,ia)+Res(B,ia)]withB(z)=πcsc(πz)z2+1=π(z2+1)sin(πz)Res(B,ia)=π2iasin(iπa)=π2ia(eπaeπa2i)=π2ash(πa)Res(B,ia)=π2iasin(iπa)=π2ash(πa)Sog(a)=π2ash(πa)

Commented by mathmax by abdo last updated on 28/Aug/19

thank you sir.

thankyousir.

Commented by mathmax by abdo last updated on 29/Aug/19

we have proved tbat  e^(−∣x∣)  =((1−e^(−π) )/π) +(2/π)Σ_(n=1) ^∞  (((1−(−1)^n e^(−π) ))/(1+n^2 ))cos(nx)  (developpement at fourier serie)  x=0 ⇒1 =((1−e^(−π) )/π) +(2/π) Σ_(n=1) ^∞ (1/(n^2  +1)) −(2/π)e^(−π) Σ_(n=1) ^∞    (((−1)^n )/(n^2  +1))  ⇒π =1−e^(−π)  +2 Σ_(n=1) ^∞  (1/(n^2  +1)) −2 e^(−π)  Σ_(n=1) ^∞  (((−1)^n )/(n^2  +1))  x=π ⇒e^(−π)  =((1−e^(−π) )/π) +(2/π) Σ_(n=1) ^∞  (((1−(−1)^n e^(−π) ))/(n^2  +1))(−1)^n  ⇒  e^(−π)  =((1−e^(−π) )/π) +(2/π)Σ_(n=1) ^∞  (((−1)^n )/(n^2  +1)) −(2/π)Σ_(n=1) ^∞   (e^(−π) /(n^2  +1)) ⇒  π e^(−π)  =1−e^(−π)  +2 Σ_(n=1) ^∞  (((−1)^n )/(n^2  +1)) −2 e^(−π)  Σ_(n=1) ^∞  (1/(n^2  +1))  let  x =Σ_(n=1) ^∞  (1/(n^2  +1)) and y =Σ_(n=1) ^∞  (((−1)^n )/(n^2  +1)) we get  π =1−e^(−π)  +2x−2e^(−π) y   and  πe^(−π) =1−e^(−π) +2y −2e^(−π) x ⇒   { ((2x−2e^(−π) y =π−1+e^(−π) )),((−2e^(−π) x +2y =πe^(−π) −1 +e^(−π) )) :}  Δ = determinant (((2           −2e^(−π) )),((−2e^(−π)         2)))=4−4 e^(−2π)  ≠0 ⇒  Δ_x = determinant (((π−1+e^(−π)                  −2e^(−π) )),((πe^(−π) −1 +e^(−π)                2)))=2π−2+2e^(−π)  +2e^(−π) (πe^(−π) −1+e^(−π) )  =2π −2 +2 e^(−π)  +2π e^(−2π) −2e^(−π)  +2 e^(−2π)   =2π −2 +4π e^(−2π)   Δ_y = determinant (((2                    π−1+e^(−π) )),((−2e^(−π)         πe^(−π) −1+e^(−π) )))=2πe^(−π) −2+2e^(−π)   +2e^(−π) (π−1 +e^(−π) )=2π e^(−π) −2 +2 e^(−π)   +2π e^(−π) −2e^(−π)  +2e^(−2π)   =4π e^(−π) −2 +2e^(−2π)   ⇒  x =(Δ_x /Δ) =((2π−2 +4π e^(−2π) )/(4−4e^(−2π) )) =((π−1+2π e^(−2π) )/(2−2 e^(−2π) )) =Σ_(n=1) ^∞  (1/(n^2  +1))  y =(Δ_y /Δ) =((4π e^(−π) −2 +2e^(−2π) )/(4−4e^(−2π) )) =((2π e^(−π) −1 +e^(−2π) )/(2−2e^(−2π) )) =Σ_(n=1) ^∞  (((−1)^n )/(n^2  +1))  Σ_(n=0) ^∞   (1/(n^2 +1)) =1+x =1+((π−1+2π e^(−2π) )/(2−2e^(−2π) ))   Σ_(n=0) ^∞    (((−1)^n )/(n^2 +1)) =1+y =1+((2πe^(−π) −1 +e^(−2π) )/(2−2e^(−2π) ))

wehaveprovedtbatex=1eππ+2πn=1(1(1)neπ)1+n2cos(nx)(developpementatfourierserie)x=01=1eππ+2πn=11n2+12πeπn=1(1)nn2+1π=1eπ+2n=11n2+12eπn=1(1)nn2+1x=πeπ=1eππ+2πn=1(1(1)neπ)n2+1(1)neπ=1eππ+2πn=1(1)nn2+12πn=1eπn2+1πeπ=1eπ+2n=1(1)nn2+12eπn=11n2+1letx=n=11n2+1andy=n=1(1)nn2+1wegetπ=1eπ+2x2eπyandπeπ=1eπ+2y2eπx{2x2eπy=π1+eπ2eπx+2y=πeπ1+eπΔ=|22eπ2eπ2|=44e2π0Δx=|π1+eπ2eππeπ1+eπ2|=2π2+2eπ+2eπ(πeπ1+eπ)=2π2+2eπ+2πe2π2eπ+2e2π=2π2+4πe2πΔy=|2π1+eπ2eππeπ1+eπ|=2πeπ2+2eπ+2eπ(π1+eπ)=2πeπ2+2eπ+2πeπ2eπ+2e2π=4πeπ2+2e2πx=ΔxΔ=2π2+4πe2π44e2π=π1+2πe2π22e2π=n=11n2+1y=ΔyΔ=4πeπ2+2e2π44e2π=2πeπ1+e2π22e2π=n=1(1)nn2+1n=01n2+1=1+x=1+π1+2πe2π22e2πn=0(1)nn2+1=1+y=1+2πeπ1+e2π22e2π

Terms of Service

Privacy Policy

Contact: info@tinkutara.com