All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 55268 by maxmathsup by imad last updated on 20/Feb/19
calculate∑n=0∞(−1)n4n+3
Commented by maxmathsup by imad last updated on 21/Feb/19
letS(x)=∑n=0∞(−1)n4n+3x4n+3with∣x∣<1wehavedSdx(x)=∑n=0∞(−1)nx4n+2=x2∑n=0∞(−x4)n=x21+x4⇒S(x)=∫0xt21+t4dt+cbutc=S(0)=0⇒S(x)=∫0xt2t4+1dtand∑n=0∞(−1)n4n+3=limx→1S(x)=∫01t21+t4dt=Iwehave∫0∞t2t4+1dt=∫01t2t4+1dt+∫1+∞t2t4+1dtand∫1+∞t2t4+1dt=t=1u−∫011u2(1u4+1)−duu2=∫01du1+u4⇒2∫01t2t4+1dt=∫0∞t2t4+1dt⇒∫01t2t4+1dt=12∫0∞t2t4+1dtchangementt=α14give∫0∞t2t4+1dt=∫0∞α121+α14α14−1dα=14∫0∞α34−11+αdα=14πsin(3π4)=π4sin(π4)=π422=π22⇒∫01t2t4+1dt=π42⇒∑n=0∞(−1)n4n+3=π42.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com