Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 55268 by maxmathsup by imad last updated on 20/Feb/19

calculate Σ_(n=0) ^∞     (((−1)^n )/(4n+3))

calculaten=0(1)n4n+3

Commented by maxmathsup by imad last updated on 21/Feb/19

let S(x)=Σ_(n=0) ^∞  (((−1)^n )/(4n+3))x^(4n+3)       with ∣x∣<1  we have  (dS/dx)(x) =Σ_(n=0) ^∞ (−1)^n  x^(4n +2)  =x^2  Σ_(n=0) ^∞ (−x^4 )^n  =(x^2 /(1+x^4 )) ⇒  S(x)=∫_0 ^x   (t^2 /(1+t^4 ))dt +c   but c =S(0)=0 ⇒S(x) =∫_0 ^x  (t^2 /(t^4  +1)) dt  and  Σ_(n=0) ^∞   (((−1)^n )/(4n+3)) =lim_(x→1) S(x) =∫_0 ^1   (t^2 /(1+t^4 ))dt =I   we have ∫_0 ^∞   (t^2 /(t^4  +1))dt =∫_0 ^1   (t^2 /(t^4  +1)) dt +∫_1 ^(+∞)   (t^2 /(t^4  +1)) dt and   ∫_1 ^(+∞)   (t^2 /(t^4  +1))dt =_(t=(1/u))    −∫_0 ^1      (1/(u^2 ((1/u^4 ) +1))) ((−du)/u^2 ) =∫_0 ^1    (du/(1+u^4 )) ⇒  2 ∫_0 ^1   (t^2 /(t^4  +1))dt =∫_0 ^∞    (t^2 /(t^4  +1))dt ⇒∫_0 ^1  (t^2 /(t^4  +1))dt =(1/2) ∫_0 ^∞   (t^2 /(t^4  +1))dt changement   t =α^(1/4)   give  ∫_0 ^∞   (t^2 /(t^4  +1))dt =∫_0 ^∞    (α^(1/2) /(1+α)) (1/4) α^((1/4)−1)  dα =(1/4)∫_0 ^∞   (α^((3/4)−1) /(1+α)) dα  =(1/4) (π/(sin(((3π)/4)))) =(π/(4sin((π/4)))) =(π/(4((√2)/2))) =(π/(2(√2))) ⇒∫_0 ^1   (t^2 /(t^4  +1)) dt =(π/(4(√2))) ⇒  Σ_(n=0) ^∞   (((−1)^n )/(4n+3)) =(π/(4(√2))) .

letS(x)=n=0(1)n4n+3x4n+3withx∣<1wehavedSdx(x)=n=0(1)nx4n+2=x2n=0(x4)n=x21+x4S(x)=0xt21+t4dt+cbutc=S(0)=0S(x)=0xt2t4+1dtandn=0(1)n4n+3=limx1S(x)=01t21+t4dt=Iwehave0t2t4+1dt=01t2t4+1dt+1+t2t4+1dtand1+t2t4+1dt=t=1u011u2(1u4+1)duu2=01du1+u4201t2t4+1dt=0t2t4+1dt01t2t4+1dt=120t2t4+1dtchangementt=α14give0t2t4+1dt=0α121+α14α141dα=140α3411+αdα=14πsin(3π4)=π4sin(π4)=π422=π2201t2t4+1dt=π42n=0(1)n4n+3=π42.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com