Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 56330 by maxmathsup by imad last updated on 14/Mar/19

calculate Σ_(n=0) ^∞    (((−1)^n )/(n^2 (3n+1)))

calculaten=0(1)nn2(3n+1)

Commented by maxmathsup by imad last updated on 24/Mar/19

let decompose F(x)=(1/(x^2 (3x+1))) ⇒F(x)=(a/x) +(b/x^2 ) +(c/(3x+1))  b=lim_(x→0) x^2  F(x)=1  c =lim_(x→−(1/3))    (3x+1)F(x) =9 ⇒F(x)=(a/x) +(1/x^2 ) +(9/(3x+1))  F(−1) =−(1/2) =−a +1 −(9/2) ⇒−1 =−2a +2 −9 ⇒−1=−2a−7 ⇒  2a =−6 ⇒a =−3 ⇒F(x)=−(3/x) +(1/x^2 ) +(9/(3x+1)) ⇒  Σ_(n=1) ^∞   (((−1)^n )/(n^2 (3n+1))) =−3 Σ_(n=1) ^∞  (((−1)^n )/n) +Σ_(n=1) ^∞  (((−1)^n )/n^2 ) +9 Σ_(n=1) ^∞  (((−1)^n )/(3n+1))  but Σ_(n=1) ^∞   (((−1)^n )/n) =−ln(2)  let find Σ_(n=1) ^∞   (((−1)^n )/n^2 )  we have  Σ_(n=1) ^∞   (((−1)^n )/n^2 ) =Σ_(n=1) ^∞  (1/(4n^2 )) −Σ_(n=0) ^∞   (1/((2n+1)^2 ))  Σ_(n=1) ^∞  (1/n^2 ) =Σ_(n=1) ^∞  (1/(4n^2 )) +Σ_(n=0) ^∞  (1/((2n+1)^2 )) ⇒Σ_(n=0) ^∞  (1/((2n+1)^2 )) =(3/4) (π^2 /6) =(π^2 /8) ⇒  Σ_(n=1) ^∞   (((−1)^n )/n^2 ) =(π^2 /(24)) −(π^2 /8) =((π^2 −3π^2 )/(24)) =−(π^2 /(12))   let determine Σ_(n=1) ^∞  (((−1)^n )/(3n+1))  let S(x) =Σ_(n=1) ^∞   (−1)^n    (x^(3n+1) /(3n+1))  with ∣x∣<1 ⇒(dS/dx)(x) =Σ_(n=1) ^∞ (−1)^n  x^(3n)   =Σ_(n=1) ^∞   (−x^3 )^n  =(1/(1+x^3 )) −1  =((−x^3 )/(1+x^3 )) ⇒S(x) =∫_0 ^x   ((−t^3 )/(1+t^3 )) dt +λ  S(0)=0 ⇒λ =0 ⇒ S(x) =−∫_0 ^x   ((t^3 +1−1)/(t^3  +1)) dt  =−x  + ∫_0 ^x   (dt/(t^3  +1))   let decompose F(t) =(1/(t^3  +1)) =(1/((t+1)(t^2 −t+1)))  F(t)=(a/(t+1)) +((bt +c)/(t^2 −t +1))  a =lim_(t→−1) (t+1)F(t)=(1/3)  lim_(t→+∞) t F(t) =0 =a+b ⇒b =−(1/3) ⇒F(t) =(1/(3(t+1))) −(1/3) ((t−3c)/(t^2 −t +1))  F(o) =1 =(1/3) +c ⇒c =(2/3) ⇒F(t)=(1/(3(t+1))) −(1/3) ((t−2)/(t^2 −t+1)) ⇒  ∫ F(t)dt =(1/3)ln∣t+1∣ −(1/6) ∫ ((2t−1−3)/(t^2 −t+1)) dt  =(1/3)ln∣t+1∣−(1/6)ln(t^2 −t +1) +(1/2) ∫   (dt/(t^2 −t +1)) but  ∫  (dt/(t^2 −t +1)) =∫  (dt/((t−(1/2))^2  +(3/4))) =_(t+(1/2)=((√3)/2)u)       ∫    (1/((3/4)(1+u^2 ))) ((√3)/2) du  =(4/3) ((√3)/2) arctanu +c =(2/(√3)) arctan(((2t+1)/(√3))) ⇒  S(x)=−x   +[(1/3)ln∣t+1∣−(1/6)ln(t^2 −t+1)+(1/(√3)) arctan(((2t+1)/(√3)))]_0 ^x   =−x +{(1/3)ln∣x+1∣−(1/6)ln(x^2 −x+1)+(1/(√3)) arctan(((2x+1)/(√3)))−(1/(√3)) arctan((1/(√3)))}  ⇒ Σ_(n=1) ^∞   (((−1)^n )/(3n+1)) =S(1) =−1 +(1/3)ln(2) +(1/(√3)) arctan((√3))−(1/(√3)) arctan((1/(√3)))  =−1 +(1/3)ln(2) +(1/(√3)) arctan((√3))−(1/(√3))((π/2) −arctan((√3)))  =−1 +((ln(2))/3) +(2/(√3)) arctan((√3)) −(π/(2(√3))) ⇒  Σ_(n=1) ^∞  (((−1)^n )/(n^2 (3n+1))) = 3ln(2) −(π^2 /(12)) −9 +3ln(2) +((18)/(√3)) arctan((√3)) −((9π)/(2(√3))) .

letdecomposeF(x)=1x2(3x+1)F(x)=ax+bx2+c3x+1b=limx0x2F(x)=1c=limx13(3x+1)F(x)=9F(x)=ax+1x2+93x+1F(1)=12=a+1921=2a+291=2a72a=6a=3F(x)=3x+1x2+93x+1n=1(1)nn2(3n+1)=3n=1(1)nn+n=1(1)nn2+9n=1(1)n3n+1butn=1(1)nn=ln(2)letfindn=1(1)nn2wehaven=1(1)nn2=n=114n2n=01(2n+1)2n=11n2=n=114n2+n=01(2n+1)2n=01(2n+1)2=34π26=π28n=1(1)nn2=π224π28=π23π224=π212letdeterminen=1(1)n3n+1letS(x)=n=1(1)nx3n+13n+1withx∣<1dSdx(x)=n=1(1)nx3n=n=1(x3)n=11+x31=x31+x3S(x)=0xt31+t3dt+λS(0)=0λ=0S(x)=0xt3+11t3+1dt=x+0xdtt3+1letdecomposeF(t)=1t3+1=1(t+1)(t2t+1)F(t)=at+1+bt+ct2t+1a=limt1(t+1)F(t)=13limt+tF(t)=0=a+bb=13F(t)=13(t+1)13t3ct2t+1F(o)=1=13+cc=23F(t)=13(t+1)13t2t2t+1F(t)dt=13lnt+1162t13t2t+1dt=13lnt+116ln(t2t+1)+12dtt2t+1butdtt2t+1=dt(t12)2+34=t+12=32u134(1+u2)32du=4332arctanu+c=23arctan(2t+13)S(x)=x+[13lnt+116ln(t2t+1)+13arctan(2t+13)]0x=x+{13lnx+116ln(x2x+1)+13arctan(2x+13)13arctan(13)}n=1(1)n3n+1=S(1)=1+13ln(2)+13arctan(3)13arctan(13)=1+13ln(2)+13arctan(3)13(π2arctan(3))=1+ln(2)3+23arctan(3)π23n=1(1)nn2(3n+1)=3ln(2)π2129+3ln(2)+183arctan(3)9π23.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com