All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 56330 by maxmathsup by imad last updated on 14/Mar/19
calculate∑n=0∞(−1)nn2(3n+1)
Commented by maxmathsup by imad last updated on 24/Mar/19
letdecomposeF(x)=1x2(3x+1)⇒F(x)=ax+bx2+c3x+1b=limx→0x2F(x)=1c=limx→−13(3x+1)F(x)=9⇒F(x)=ax+1x2+93x+1F(−1)=−12=−a+1−92⇒−1=−2a+2−9⇒−1=−2a−7⇒2a=−6⇒a=−3⇒F(x)=−3x+1x2+93x+1⇒∑n=1∞(−1)nn2(3n+1)=−3∑n=1∞(−1)nn+∑n=1∞(−1)nn2+9∑n=1∞(−1)n3n+1but∑n=1∞(−1)nn=−ln(2)letfind∑n=1∞(−1)nn2wehave∑n=1∞(−1)nn2=∑n=1∞14n2−∑n=0∞1(2n+1)2∑n=1∞1n2=∑n=1∞14n2+∑n=0∞1(2n+1)2⇒∑n=0∞1(2n+1)2=34π26=π28⇒∑n=1∞(−1)nn2=π224−π28=π2−3π224=−π212letdetermine∑n=1∞(−1)n3n+1letS(x)=∑n=1∞(−1)nx3n+13n+1with∣x∣<1⇒dSdx(x)=∑n=1∞(−1)nx3n=∑n=1∞(−x3)n=11+x3−1=−x31+x3⇒S(x)=∫0x−t31+t3dt+λS(0)=0⇒λ=0⇒S(x)=−∫0xt3+1−1t3+1dt=−x+∫0xdtt3+1letdecomposeF(t)=1t3+1=1(t+1)(t2−t+1)F(t)=at+1+bt+ct2−t+1a=limt→−1(t+1)F(t)=13limt→+∞tF(t)=0=a+b⇒b=−13⇒F(t)=13(t+1)−13t−3ct2−t+1F(o)=1=13+c⇒c=23⇒F(t)=13(t+1)−13t−2t2−t+1⇒∫F(t)dt=13ln∣t+1∣−16∫2t−1−3t2−t+1dt=13ln∣t+1∣−16ln(t2−t+1)+12∫dtt2−t+1but∫dtt2−t+1=∫dt(t−12)2+34=t+12=32u∫134(1+u2)32du=4332arctanu+c=23arctan(2t+13)⇒S(x)=−x+[13ln∣t+1∣−16ln(t2−t+1)+13arctan(2t+13)]0x=−x+{13ln∣x+1∣−16ln(x2−x+1)+13arctan(2x+13)−13arctan(13)}⇒∑n=1∞(−1)n3n+1=S(1)=−1+13ln(2)+13arctan(3)−13arctan(13)=−1+13ln(2)+13arctan(3)−13(π2−arctan(3))=−1+ln(2)3+23arctan(3)−π23⇒∑n=1∞(−1)nn2(3n+1)=3ln(2)−π212−9+3ln(2)+183arctan(3)−9π23.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com