All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 55276 by maxmathsup by imad last updated on 20/Feb/19
calculate∑n=1∞(−1)n16n2−1
Commented by maxmathsup by imad last updated on 08/Apr/19
letS=∑n=1∞(−1)n16n2−1⇒S=∑n=1∞(−1)n(4n−1)(4n+1)=12∑n=1∞(−1)n{14n−1−14n+1}⇒2S=∑n=1∞(−1)n4n−1−∑n=1∞(−1)n4n+1wehaveprovedthat∑n=0∞(−1)n4n+3=π42(Q55268)⇒∑n=1∞(−1)n4n−1=n=p+1∑p=0∞(−1)p+14p+3=−∑p=0∞(−1)p4p+3=−π42letdetermine∑n=1∞(−1)n4n+1letw(x)=∑n=0∞(−1)nx4n+14n+1withx∈[−1,1]wehavew(1)=∑n=0∞(−1)n4n+1=1+∑n=1∞(−1)n4n+1⇒∑n=1∞(−1)n4n+1=w(1)−1wehavew′(x)=∑n=0∞(−1)nx4n=11+x4⇒w(x)=∫0xdt1+t4+cc=w(0)=0⇒w(x)=∫0xdt1+t4andw(1)=∫01dt1+t4wehave∫0∞dt1+t4=∫01dt1+t4+∫1+∞dt1+t4but∫1+∞dt1+t4=t=1x−∫0111+1x4(−dxx2)=∫01x4x2(1+x4)dx=∫01x21+x4dx=π42(resultproved)⇒∫01dt1+t4=∫0∞dt1+t4−π42and∫0∞dt1+t4=t=u14∫0∞11+u14u14−1du=14∫0∞u14−11+udu=14πsin(π4)=π412=π24⇒∫01dt1+t4=π24−π42=π24−π28=π28⇒∑n=1∞(−1)n4n+1=π28−1⇒S=12{−π42−π28+1}=12{1−π24}.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com