Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 55276 by maxmathsup by imad last updated on 20/Feb/19

calculate Σ_(n=1) ^∞    (((−1)^n )/(16n^2 −1))

calculaten=1(1)n16n21

Commented by maxmathsup by imad last updated on 08/Apr/19

let S =Σ_(n=1) ^∞   (((−1)^n )/(16n^2  −1)) ⇒S =Σ_(n=1) ^∞   (((−1)^n )/((4n−1)(4n+1)))  =(1/2)Σ_(n=1) ^∞   (−1)^n { (1/(4n−1)) −(1/(4n+1))} ⇒2S =Σ_(n=1) ^∞  (((−1)^n )/(4n−1)) −Σ_(n=1) ^∞  (((−1)^n )/(4n+1))  we have proved that Σ_(n=0) ^∞  (((−1)^n )/(4n+3)) =(π/(4(√2)))  (Q55268) ⇒  Σ_(n=1) ^∞  (((−1)^n )/(4n−1)) =_(n=p+1)    Σ_(p=0) ^∞  (((−1)^(p+1) )/(4p+3)) =−Σ_(p=0) ^∞   (((−1)^p )/(4p+3)) =−(π/(4(√2)))  let determine Σ_(n=1) ^∞  (((−1)^n )/(4n+1))  let w(x) =Σ_(n=0) ^∞ (−1)^n   (x^(4n+1) /(4n+1))  with x∈[−1,1]  we have w(1) =Σ_(n=0) ^∞  (((−1)^n )/(4n+1)) =1+Σ_(n=1) ^∞  (((−1)^n )/(4n+1)) ⇒Σ_(n=1) ^∞  (((−1)^n )/(4n+1)) =w(1)−1  we have w^′ (x) =Σ_(n=0) ^∞  (−1)^n  x^(4n)  =(1/(1+x^4 )) ⇒w(x) =∫_0 ^x   (dt/(1+t^4 )) +c  c=w(0) =0 ⇒w(x)=∫_0 ^x   (dt/(1+t^4 ))  and w(1) =∫_0 ^1   (dt/(1+t^4 ))  we have ∫_0 ^∞    (dt/(1+t^4 )) =∫_0 ^1  (dt/(1+t^4 )) +∫_1 ^(+∞)   (dt/(1+t^4 ))  but ∫_1 ^(+∞)    (dt/(1+t^4 )) =_(t =(1/x))   −∫_0 ^1   (1/(1+(1/x^4 ))) (−(dx/x^2 ))  = ∫_0 ^1    (x^4 /(x^2 (1+x^4 ))) dx =∫_0 ^1    (x^2 /(1+x^4 )) dx  =(π/(4(√2))) (result proved) ⇒  ∫_0 ^1   (dt/(1+t^4 )) =∫_0 ^∞    (dt/(1+t^4 )) −(π/(4(√2)))  and  ∫_0 ^∞    (dt/(1+t^4 )) =_(t =u^(1/4) )      ∫_0 ^∞      (1/(1+u)) (1/4)u^((1/4)−1) du  =(1/4) ∫_0 ^∞   (u^((1/4)−1) /(1+u)) du =(1/4) (π/(sin((π/4)))) =(π/(4(1/(√2)))) =((π(√2))/4) ⇒∫_0 ^1  (dt/(1+t^4 )) =((π(√2))/4) −(π/(4(√2)))  =((π(√2))/4) −((π(√2))/8) =((π(√2))/8) ⇒Σ_(n=1) ^∞  (((−1)^n )/(4n+1)) =((π(√2))/8) −1 ⇒  S =(1/2){−(π/(4(√2))) −((π(√2))/8) +1} =(1/2){1−((π(√2))/4)} .

letS=n=1(1)n16n21S=n=1(1)n(4n1)(4n+1)=12n=1(1)n{14n114n+1}2S=n=1(1)n4n1n=1(1)n4n+1wehaveprovedthatn=0(1)n4n+3=π42(Q55268)n=1(1)n4n1=n=p+1p=0(1)p+14p+3=p=0(1)p4p+3=π42letdeterminen=1(1)n4n+1letw(x)=n=0(1)nx4n+14n+1withx[1,1]wehavew(1)=n=0(1)n4n+1=1+n=1(1)n4n+1n=1(1)n4n+1=w(1)1wehavew(x)=n=0(1)nx4n=11+x4w(x)=0xdt1+t4+cc=w(0)=0w(x)=0xdt1+t4andw(1)=01dt1+t4wehave0dt1+t4=01dt1+t4+1+dt1+t4but1+dt1+t4=t=1x0111+1x4(dxx2)=01x4x2(1+x4)dx=01x21+x4dx=π42(resultproved)01dt1+t4=0dt1+t4π42and0dt1+t4=t=u14011+u14u141du=140u1411+udu=14πsin(π4)=π412=π2401dt1+t4=π24π42=π24π28=π28n=1(1)n4n+1=π281S=12{π42π28+1}=12{1π24}.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com