All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 38518 by math khazana by abdo last updated on 26/Jun/18
calculate∑n=1∞1n2(2n−1)2
Commented by prof Abdo imad last updated on 27/Jun/18
letputSn=∑k=1n1k2(2k−1)2andletdecomposeF(x)=1x2(2x−1)2F(x)=ax+bx2+c2x−1+d(2x−1)2b=limx→0x2F(x)=1d=limx→12(2x−1)2F(x)=4⇒F(x)=ax+1x2+c2x−1+4(2x−1)2limx→+∞xF(x)=0=a+c2⇒2a+c=0⇒c=−2aF(x)=ax−2a2x−1+1x2+4(2x−1)2F(1)=1=a−2a+1+4⇒−a+4=0⇒a=4F(x)=4x−82x−1+1x2+4(2x−1)2Sn=∑k=1nF(k)=4∑k=1n1k−8∑k=1n12k−1+∑k=1n1k2+4∑k=1n1(2k−1)2but∑k=1n1k=Hn∑k=1n12k−1=1+13+15+....+12n−1=1+12+13+14+.....+12n−1+12n−12Hn=H2n−12Hn∑k=1n1k2=ξn(2)∑k=1n1(2k−1)2=∑k=2n+11(2k+1)2=∑k=0n+11(2k+1)2⇒Sn=4Hn−8H2n+4Hn+ξn(2)+4∑k=0n+11(2k+1)2Sn=−8(H2n−Hn)+ξn(2)+4∑k=0n+11(2k+1)2limn→+∞Sn=−8ln(2)+π26+4.π28=−8ln(2)+π26+π22=4π26−8ln(2)=2π23−8ln(2).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com