Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 38518 by math khazana by abdo last updated on 26/Jun/18

calculate  Σ_(n=1) ^∞   (1/(n^2 (2n−1)^2 ))

calculaten=11n2(2n1)2

Commented by prof Abdo imad last updated on 27/Jun/18

let put S_n =Σ_(k=1) ^n   (1/(k^2 (2k−1)^2 ))  and let decompose  F(x)= (1/(x^2 (2x−1)^2 ))  F(x)=(a/x) +(b/x^2 ) +(c/(2x−1)) +(d/((2x−1)^2 ))  b=lim_(x→0) x^2  F(x)=1  d=lim_(x→(1/2))   (2x−1)^2 F(x)=4 ⇒  F(x)=(a/x) +(1/x^2 ) +(c/(2x−1)) +(4/((2x−1)^2 ))  lim_(x→+∞) x F(x)=0=a +(c/2) ⇒2a+c=0 ⇒c=−2a  F(x)=(a/x) −((2a)/(2x−1)) +(1/x^2 ) +(4/((2x−1)^2 ))  F(1)=1=a −2a  +1 +4 ⇒−a +4=0 ⇒a=4  F(x)= (4/x) −(8/(2x−1))  +(1/x^2 ) +(4/((2x−1)^2 ))  S_n =Σ_(k=1) ^n F(k) = 4Σ_(k=1) ^n  (1/k) −8Σ_(k=1) ^n  (1/(2k−1))  +Σ_(k=1) ^n  (1/k^2 )  +4 Σ_(k=1) ^n  (1/((2k−1)^2 )) but  Σ_(k=1) ^n  (1/k) =H_n   Σ_(k=1) ^n  (1/(2k−1)) =1 +(1/3) +(1/5) +....+(1/(2n−1))  =1+(1/2) +(1/3) +(1/4) +.....+(1/(2n−1)) +(1/(2n))  −(1/2)H_n =H_(2n)  −(1/2) H_n   Σ_(k=1) ^n  (1/k^2 ) =ξ_n (2)  Σ_(k=1) ^n    (1/((2k−1)^2 )) =Σ_(k=2) ^(n+1)   (1/((2k+1)^2 ))  =Σ_(k=0) ^(n+1)   (1/((2k+1)^2 )) ⇒  S_n = 4 H_n   −8H_(2n)  +4 H_n   +ξ_n (2)+4Σ_(k=0) ^(n+1)  (1/((2k+1)^2 ))  S_n =−8(H_(2n)  −H_n ) +ξ_n (2) +4Σ_(k=0) ^(n+1)   (1/((2k+1)^2 ))  lim_(n→+∞) S_n =−8ln(2) +(π^2 /6) +4 .(π^2 /8)  =−8ln(2) +(π^2 /6) +(π^2 /2) =((4π^2 )/6) −8ln(2)  =((2π^2 )/3) −8ln(2) .

letputSn=k=1n1k2(2k1)2andletdecomposeF(x)=1x2(2x1)2F(x)=ax+bx2+c2x1+d(2x1)2b=limx0x2F(x)=1d=limx12(2x1)2F(x)=4F(x)=ax+1x2+c2x1+4(2x1)2limx+xF(x)=0=a+c22a+c=0c=2aF(x)=ax2a2x1+1x2+4(2x1)2F(1)=1=a2a+1+4a+4=0a=4F(x)=4x82x1+1x2+4(2x1)2Sn=k=1nF(k)=4k=1n1k8k=1n12k1+k=1n1k2+4k=1n1(2k1)2butk=1n1k=Hnk=1n12k1=1+13+15+....+12n1=1+12+13+14+.....+12n1+12n12Hn=H2n12Hnk=1n1k2=ξn(2)k=1n1(2k1)2=k=2n+11(2k+1)2=k=0n+11(2k+1)2Sn=4Hn8H2n+4Hn+ξn(2)+4k=0n+11(2k+1)2Sn=8(H2nHn)+ξn(2)+4k=0n+11(2k+1)2limn+Sn=8ln(2)+π26+4.π28=8ln(2)+π26+π22=4π268ln(2)=2π238ln(2).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com