All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 74887 by abdomathmax last updated on 03/Dec/19
calculate∑n=1∞(−1)n(n+1)n3
Commented by mathmax by abdo last updated on 21/Dec/19
letdecomposeF(x)=1(x+1)x3⇒F(x)=ax+bx2+cx3+dx+1c=x3F(x)∣x=0=1d=(x+1)F(x)∣x=−1=−1⇒F(x)=ax+bx2+1x3−1x+1limx→+∞xF(x)=0=a−1⇒a=1⇒F(x)=1x+bx2+1x3−1x+1F(1)=12=1+b+1−12⇒b+2=1⇒b=−1⇒F(x)=1x−1x2+1x3−1x+1⇒∑n=1∞(−1)n(n+1)n3=∑n=1∞(−1)nn−∑n=1∞(−1)nn2+∑n=1∞(−1)nn3−∑n=1∞(−1)nn+1wehave∑n=1∞(−1)nn=−ln(2)∑n=1∞(−1)nn2=(21−2−1)ξ(2)=−12×π26=−π212∑n=1∞(−1)nn3=(21−3−1)ξ(3)=(14−1)ξ(3)=−34ξ(3)∑n=1∞(−1)nn+1=∑n=2∞(−1)n−1n=∑n=1∞(−1)n−1n−1=ln(2)−1⇒S=−ln(2)+π212−34ξ(3)−ln(2)+1=1−2ln(2)+π212−34ξ(3)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com