Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 74887 by abdomathmax last updated on 03/Dec/19

calculate Σ_(n=1) ^∞   (((−1)^n )/((n+1)n^3 ))

calculaten=1(1)n(n+1)n3

Commented by mathmax by abdo last updated on 21/Dec/19

let decompose F(x)=(1/((x+1)x^3 )) ⇒F(x)=(a/x)+(b/x^2 ) +(c/x^3 ) +(d/(x+1))  c =x^3 F(x)∣_(x=0)   =1  d=(x+1)F(x)∣_(x=−1)    =−1 ⇒F(x)=(a/x)+(b/x^2 ) +(1/x^3 )−(1/(x+1))  lim_(x→+∞) xF(x)=0 =a−1 ⇒a=1 ⇒F(x)=(1/x) +(b/x^2 ) +(1/x^3 )−(1/(x+1))  F(1)=(1/2) =1+b+1−(1/2) ⇒b+2 =1 ⇒b=−1 ⇒  F(x)=(1/x)−(1/x^2 ) +(1/x^3 )−(1/(x+1)) ⇒  Σ_(n=1) ^∞  (((−1)^n )/((n+1)n^3 ))  =Σ_(n=1) ^∞  (((−1)^n )/n)−Σ_(n=1) ^∞  (((−1)^n )/n^2 ) +Σ_(n=1) ^∞  (((−1)^n )/n^3 )  −Σ_(n=1) ^∞  (((−1)^n )/(n+1))  we have  Σ_(n=1) ^∞  (((−1)^n )/n) =−ln(2)  Σ_(n=1) ^∞  (((−1)^n )/n^2 ) =(2^(1−2) −1)ξ(2)=−(1/2)×(π^2 /6) =−(π^2 /(12))  Σ_(n=1) ^∞  (((−1)^n )/n^3 ) =(2^(1−3) −1)ξ(3) =((1/4)−1)ξ(3) =−(3/4)ξ(3)  Σ_(n=1) ^∞ (((−1)^n )/(n+1)) =Σ_(n=2) ^∞  (((−1)^(n−1) )/n) =Σ_(n=1) ^∞  (((−1)^(n−1) )/n) −1 =ln(2)−1 ⇒  S =−ln(2)+(π^2 /(12))−(3/4)ξ(3)−ln(2)+1  =1−2ln(2)+(π^2 /(12))−(3/4)ξ(3)

letdecomposeF(x)=1(x+1)x3F(x)=ax+bx2+cx3+dx+1c=x3F(x)x=0=1d=(x+1)F(x)x=1=1F(x)=ax+bx2+1x31x+1limx+xF(x)=0=a1a=1F(x)=1x+bx2+1x31x+1F(1)=12=1+b+112b+2=1b=1F(x)=1x1x2+1x31x+1n=1(1)n(n+1)n3=n=1(1)nnn=1(1)nn2+n=1(1)nn3n=1(1)nn+1wehaven=1(1)nn=ln(2)n=1(1)nn2=(2121)ξ(2)=12×π26=π212n=1(1)nn3=(2131)ξ(3)=(141)ξ(3)=34ξ(3)n=1(1)nn+1=n=2(1)n1n=n=1(1)n1n1=ln(2)1S=ln(2)+π21234ξ(3)ln(2)+1=12ln(2)+π21234ξ(3)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com