Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 74884 by abdomathmax last updated on 03/Dec/19

calculate Σ_(n=1) ^(20)  (1/n^2 )

calculaten=1201n2

Commented by mathmax by abdo last updated on 03/Dec/19

let S=Σ_(n=1) ^(20)  (1/n^2 ) ⇒ S =Σ_(p=1) ^(10) (1/((2p)^2 )) +Σ_(p=0) ^([((19)/2)])  (1/((2p+1)^2 ))  =(1/4)Σ_(p=1) ^(10)  (1/p^2 ) +Σ_(p=0) ^9  (1/((2p+1)^2 ))  also  Σ_(p=1) ^(10)  (1/p^2 ) =(1/4)Σ_(p=1) ^5  (1/p^2 ) +Σ_(p=0) ^4  (1/((2p+1)^2 )) ⇒  S =(1/4){(1/4)Σ_(p=1) ^5  (1/p^2 ) +Σ_(p=0) ^4  (1/((2p+1)^2 ))}+Σ_(p=0) ^4  (1/((2p+1)^2 )) +Σ_(p=5) ^9  (1/((2p+1)^2 ))  =(1/(16))Σ_(p=1) ^5  (1/p^2 ) +(5/4) Σ_(p=0) ^4  (1/((2p+1)^2 )) +Σ_(p=5) ^9  (1/((2p+1)^2 ))  we have  Σ_(p=5) ^9  (1/((2p+1)^2 )) =_(p−5=k)   Σ_(k=0) ^4  (1/((2k+11)^2 )) ⇒  S =(1/(16))Σ_(p=1) ^5  (1/p^2 ) +(5/4)Σ_(p=0) ^4  (1/((2p+1)^2 )) +Σ_(p=0) ^4  (1/((2p+11)^2 ))  =(1/(16))(1+(1/2^2 ) +(1/3^2 ) +(1/4^2 ) +(1/5^2 ))+(5/4)(1+(1/3^2 ) +(1/5^2 ) +(1/7^2 ) +(1/9^2 ) +(1/(11^2 )))  +(1/(11^2 )) +(1/(13^2 )) +(1/(15^2 )) +(1/(17^2 )) +(1/(19^2 ))  S =(1/(16))(1+(1/4) +(1/9) +(1/(16)) +(1/(25)))+(5/4)(1+(1/9) +(1/(25)) +(1/(49)) +(1/(81)) +(1/(121)))  +(1/(11^2 )) +(1/(13^2 )) +(1/(15^2 )) +(1/(17^2 )) +(1/(19^2 )) =....its eazy now to find S..

letS=n=1201n2S=p=1101(2p)2+p=0[192]1(2p+1)2=14p=1101p2+p=091(2p+1)2alsop=1101p2=14p=151p2+p=041(2p+1)2S=14{14p=151p2+p=041(2p+1)2}+p=041(2p+1)2+p=591(2p+1)2=116p=151p2+54p=041(2p+1)2+p=591(2p+1)2wehavep=591(2p+1)2=p5=kk=041(2k+11)2S=116p=151p2+54p=041(2p+1)2+p=041(2p+11)2=116(1+122+132+142+152)+54(1+132+152+172+192+1112)+1112+1132+1152+1172+1192S=116(1+14+19+116+125)+54(1+19+125+149+181+1121)+1112+1132+1152+1172+1192=....itseazynowtofindS..

Commented by mathmax by abdo last updated on 05/Dec/19

another way   let  S =Σ_(n=1) ^(20)  (1/n^2 ) ⇒  S = Σ_(n=1_(n=3k) ) ^(20)  (1/n^2 ) +Σ_(n=1_(n=3k+1) ) ^(20)  (1/n^2 ) +Σ_(n=1_(n=3k+2) ) ^(20)  (1/n^2 )  =Σ_(n=1) ^([((20)/3)])  (1/(9n^2 )) +Σ_(n=0) ^([((19)/3)])  (1/((3k+1)^2 ))  +Σ_(n=0) ^([((18)/3)])  (1/((3k+2)^2 ))  =(1/9) Σ_(n=1) ^6  (1/n^2 ) +Σ_(n=0) ^6  (1/((3k+1)^2 )) +Σ_(n=0) ^6  (1/((3k+2)^2 ))  =(1/9){ 1+(1/2^2 ) +(1/3^2 ) +(1/4^2 ) +(1/5^2 ) +(1/6^2 )} +{1+(1/4^2 ) +(1/7^2 ) +(1/(10^2 )) +(1/(13^2 )) +(1/(16^2 ))+(1/(19^2 ))}  +{(1/2^2 ) +(1/5^2 ) +(1/8^2 ) +(1/(11^2 )) +(1/(14^2 )) +(1/(17^2 )) +(1/(20^2 ))} =....

anotherwayletS=n=1201n2S=n=1n=3k201n2+n=1n=3k+1201n2+n=1n=3k+2201n2=n=1[203]19n2+n=0[193]1(3k+1)2+n=0[183]1(3k+2)2=19n=161n2+n=061(3k+1)2+n=061(3k+2)2=19{1+122+132+142+152+162}+{1+142+172+1102+1132+1162+1192}+{122+152+182+1112+1142+1172+1202}=....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com