Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 67232 by prof Abdo imad last updated on 24/Aug/19

calculate Σ_(n=1) ^∞  ((cos(n(π/3)))/n)

calculaten=1cos(nπ3)n

Commented by mathmax by abdo last updated on 25/Aug/19

first let determine Σ_(n=1) ^∞  ((cos(nx))/n) =Re(Σ_(n=1) ^∞  (e^(inx) /n))  let s(x) =Σ_(n=1) ^∞  (e^(inx) /n) ⇒s^′ (x)=iΣ_(n=1) ^∞  e^(inx) =ie^(ix) Σ_(n=1) ^∞  e^(i(n−1)x)   =ie^(ix) Σ_(n=0) ^∞  e^(inx)  =((ie^(ix) )/(1−e^(ix) ))  ⇒s(x) =−ln(1−e^(ix) )+c  x=π ⇒Σ_(n=1) ^∞  (((−1)^n )/n) =−ln(2) =−ln(2)+c ⇒c =0  s(x) =−ln(1−e^(ix) )  ln(1−e^(ix) )=ln(1−cosx−isinx) =ln(2sin^2 ((x/2))−2isin((x/2))cos((x/2)))  =ln(−2isin((x/2))e^(i(x/2)) ) =ln(−2i)+ln(sin((x/2)))+i(x/2)  =ln(2)+ln(−i) +ln(sin((x/2)))+((ix)/2)  =ln(2sin((x/2)))−((iπ)/2) +((ix)/2) ⇒Σ_(n=1) ^∞  ((cos(nx))/n) =−ln(2sin((x/2)))  x=(π/3) ⇒ Σ_(n=1) ^∞  ((cos(((nπ)/3)))/n) =−ln(2sin((π/6))) =−ln(2×(1/2)) =0 so  we have  ((cos((π/3)))/1) +((cos(((2π)/3)))/2) +((cos(((3π)/3)))/3) +....=0  also we can extract that Σ_(n=1) ^∞  ((sin(nx))/n) =((π−x)/2) ⇒  Σ_(n=1) ^∞  ((sin(((nπ)/3)))/n) =((π−(π/3))/2) =(π/2)−(π/6) =((2π)/6) =(π/3)

firstletdeterminen=1cos(nx)n=Re(n=1einxn)lets(x)=n=1einxns(x)=in=1einx=ieixn=1ei(n1)x=ieixn=0einx=ieix1eixs(x)=ln(1eix)+cx=πn=1(1)nn=ln(2)=ln(2)+cc=0s(x)=ln(1eix)ln(1eix)=ln(1cosxisinx)=ln(2sin2(x2)2isin(x2)cos(x2))=ln(2isin(x2)eix2)=ln(2i)+ln(sin(x2))+ix2=ln(2)+ln(i)+ln(sin(x2))+ix2=ln(2sin(x2))iπ2+ix2n=1cos(nx)n=ln(2sin(x2))x=π3n=1cos(nπ3)n=ln(2sin(π6))=ln(2×12)=0sowehavecos(π3)1+cos(2π3)2+cos(3π3)3+....=0alsowecanextractthatn=1sin(nx)n=πx2n=1sin(nπ3)n=ππ32=π2π6=2π6=π3

Answered by Smail last updated on 25/Aug/19

Σ_(n=1) ^∞ (e^(inx) /n)=−ln(1−e^(ix) )  =−ln(1−cos(x)−isin(x))  =−ln(2sin^2 (x/2)−2isin(x/2)cos(x/2))  =−ln(2)−ln∣sin(x/2)∣−ln(sin(x/2)−icos(x/2))  =−ln(2)−ln∣sin(x/2)∣−ln(cos(((π−x)/2))−isin(((π−x)/2)))  =−ln(2)−ln∣sin(x/2)∣+((π−x)/2)i

n=1einxn=ln(1eix)=ln(1cos(x)isin(x))=ln(2sin2(x/2)2isin(x/2)cos(x/2))=ln(2)lnsin(x/2)ln(sin(x/2)icos(x/2))=ln(2)lnsin(x/2)ln(cos(πx2)isin(πx2))=ln(2)lnsin(x/2)+πx2i

Commented by Smail last updated on 25/Aug/19

For x=(π/3)  Σ_(n=1) ^∞ (e^(in(π/3)) /n)=−ln(2)−ln∣sin(π/6)∣+i((π−π/3)/2)  So, Σ_(n=1) ^∞ ((cos(n(π/3)))/n)=Re(Σ_(n=1) ^∞ (e^(in(π/3)) /n))  Σ_(n=1) ^∞ ((cos(((nπ)/3)))/n)=−ln(2)−ln∣sin(π/6)∣

Forx=π3n=1einπ3n=ln(2)lnsin(π/6)+iππ/32So,n=1cos(nπ3)n=Re(n=1einπ3n)n=1cos(nπ3)n=ln(2)lnsin(π/6)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com