All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 31979 by abdo imad last updated on 17/Mar/18
calculate∑n=2∞1(n2−1)2.
Commented by abdo imad last updated on 22/Mar/18
letputSn=∑k=2n1(k2−1)2Sn=∑k=2n1(k−1)2(k+1)2letdecomposeF(x)=1(x−1)2(x+1)2=ax−1+b(x−1)2+c(x+1)+d(x+1)2b=limx→1(x−1)2F(x)=14d=limx→−1(x+1)2F(x)=14wehaveF(−x)=F(x)⇒−ax+1−cx−1+b(x+1)2+d(x−1)2=F(x)⇒c=−a⇒F(0)F(x)=ax−1−ax+1+14(x−1)2+14(x+1)2F(0)=1=−2a+12⇒2a=−12⇒a=−14andF(x)=−14(x−1)+14(x+1)+14(x−1)2+14(x+1)24Sn=4∑k=2nF(k)=−∑k=2n1k−1+∑k=2n1k+1+∑k=2n1(k−1)2+∑k=2n1(k+1)2=−∑k=1n−11k+∑k=3n+11k+∑k=1n−11k2+∑k=3n+11k2=−Hn−1+Hn+1−32+ξn−1(2)+ξn+1(2)−54=Hn+1−Hn−1−114+ξn−1(2)+ξn+1(2)butHn+1−Hn−1n→∞→0ξn−1(2)→π26ξn+1(2)→π26⇒4Sn→π23−114⇒limn→∞Sn=π212−1116.letrememberthatHn=∑k=1n1kandξn(x)=∑k=1n1kx.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com