Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 31979 by abdo imad last updated on 17/Mar/18

calculate  Σ_(n=2) ^∞    (1/((n^2 −1)^2 ))  .

calculaten=21(n21)2.

Commented by abdo imad last updated on 22/Mar/18

let put S_n =Σ_(k=2) ^n   (1/((k^2  −1)^2 ))  S_n = Σ_(k=2) ^n   (1/((k−1)^2 (k+1)^2 )) let decompose  F(x) = (1/((x−1)^2 (x+1)^2 )) = (a/(x−1)) +(b/((x−1)^2 )) +(c/((x+1))) +(d/((x+1)^2 ))  b=lim_(x→1) (x−1)^2 F(x)=(1/4)  d=lim_(x→−1) (x+1)^2 F(x)=(1/4) we have F(−x)=F(x)⇒  ((−a)/(x+1)) −(c/(x−1)) +(b/((x+1)^2 )) +(d/((x−1)^2 )) =F(x) ⇒c=−a ⇒F(0)  F(x)= (a/(x−1)) −(a/(x+1)) + (1/(4(x−1)^2 )) + (1/(4(x+1)^2 ))  F(0) = 1 =−2a  +(1/2) ⇒2a =−(1/2) ⇒a=−(1/4) and  F(x) = ((−1)/(4(x−1))) + (1/(4(x+1))) + (1/(4(x−1)^2 )) + (1/(4(x+1)^2 ))  4S_n =4Σ_(k=2) ^(n )  F(k)=−Σ_(k=2) ^n  (1/(k−1)) +Σ_(k=2) ^n  (1/(k+1)) +Σ_(k=2) ^n  (1/((k−1)^2 ))  +Σ_(k=2) ^n  (1/((k+1)^2 ))   =−Σ_(k=1) ^(n−1)   (1/k)  +Σ_(k=3) ^(n+1)   (1/k)   + Σ_(k=1) ^(n−1)   (1/k^2 )  +Σ_(k=3) ^(n+1)  (1/k^2 )  =−H_(n−1)  +H_(n+1)  −(3/2) +  ξ_(n−1) (2) +ξ_(n+1) (2) −(5/4)  =H_(n+1) −H_(n−1)   −((11)/4)  +ξ_(n−1) (2) +ξ_(n+1) (2) but  H_(n+1 )  −H_(n−1)  _(n→∞) →0   ξ_(n−1) (2) →(π^2 /6)  ξ_(n+1) (2)→ (π^2 /6) ⇒ 4S_n  → (π^2 /3) −((11)/4) ⇒  lim_(n→∞)  S_n = (π^2 /(12))  −((11)/(16)) . let remember that H_n =Σ_(k=1) ^n  (1/k)  and ξ_n (x) =Σ_(k=1) ^n  (1/k^x ) .

letputSn=k=2n1(k21)2Sn=k=2n1(k1)2(k+1)2letdecomposeF(x)=1(x1)2(x+1)2=ax1+b(x1)2+c(x+1)+d(x+1)2b=limx1(x1)2F(x)=14d=limx1(x+1)2F(x)=14wehaveF(x)=F(x)ax+1cx1+b(x+1)2+d(x1)2=F(x)c=aF(0)F(x)=ax1ax+1+14(x1)2+14(x+1)2F(0)=1=2a+122a=12a=14andF(x)=14(x1)+14(x+1)+14(x1)2+14(x+1)24Sn=4k=2nF(k)=k=2n1k1+k=2n1k+1+k=2n1(k1)2+k=2n1(k+1)2=k=1n11k+k=3n+11k+k=1n11k2+k=3n+11k2=Hn1+Hn+132+ξn1(2)+ξn+1(2)54=Hn+1Hn1114+ξn1(2)+ξn+1(2)butHn+1Hn1n0ξn1(2)π26ξn+1(2)π264Snπ23114limnSn=π2121116.letrememberthatHn=k=1n1kandξn(x)=k=1n1kx.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com