Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 68596 by Abdo msup. last updated on 14/Sep/19

calculate ∫_(π/2) ^(π/3)     ((xdx)/(3+cosx))

calculateπ2π3xdx3+cosx

Commented by mathmax by abdo last updated on 15/Sep/19

changeent tan((x/2))=t give  I =∫_(π/2) ^(π/3)  ((xdx)/(3+cosx)) =∫_1 ^(1/(√3))     ((2arctan(t))/(3+((1−t^2 )/(1+t^2 )))) ((2dt)/(1+t^2 ))  =∫_1 ^(1/(√3))   ((4arctan(t))/(3+3t^2  +1−t^2 ))dt =4 ∫_1 ^(1/(√3))   ((arctan(t))/(2t^2  +4))dt =2 ∫_1 ^(1/(√3))   ((arctan(t))/(t^2  +2))dt  let f(α) =∫_1 ^(1/(√3))     ((arctan(αt))/(t^(2 ) +2))dt   with α>0 ⇒  f^′ (α)=∫_1 ^(1/(√3))    (t/((α^2 t^2  +1)(t^2  +2)))dt  let decompose  F(t) =(t/((α^2 t^2  +1)(t^2  +2))) ⇒F(t)=((at+b)/(α^2 t^2  +1)) +((ct +d)/(t^2  +2))  F(−t)=−F(t) ⇒b=d=0 ⇒F(t) =((at)/(α^2 t^2  +1)) +((ct)/(t^2  +2))  lim_(t→+∞)  tF(t) =0 =(a/α^2 ) +c ⇒c=−(a/α^2 ) ⇒  F(t) =((at)/(α^2 t^2 +1))−((at)/(α^2 (t^2  +2)))  F(1) =(1/(3(α^2  +1))) =(a/(α^2  +1)) −(a/(3α^2 )) ⇒(1/3) =a−(a/(3α^2 ))(α^2  +1) ⇒  1 =3a−((a(α^(2 ) +1))/α^2 ) =(((3α^2 −α^2 −1)a)/α^2 ) ⇒(2α^2 −1)a =α^2  ⇒  a =(α^2 /(2α^2 −1)) ⇒F(t) =((α^2 t)/((2α^2 −1)(α^2 t^2  +1))) −(t/((2α^2 −1)(t^2  +2))) ⇒  f^′ (α) =(1/(2(2α^2 −1))) ∫_1 ^(1/(√3))    ((2α^2 t)/(α^2 t^2  +1))dt−(1/(2(2α^2 −1))) ∫_1 ^(1/(√3))    ((2tdt)/(t^2  +2))  =(1/(2(2α^2 −1)))[ln(α^2 t^2  +1)]_1 ^(1/(√3))   −(1/(2(2α^2 −1))) [ln(t^(2 ) +2)]_1 ^(1/(√3))   =(1/(2(2α^2 −1))){ln((α^2 /3)+1)−ln(α^2  +1)}−(1/(2(2α^2 −1))){ln((1/3)+2)−ln(3)}  ⇒f(α) =∫((ln(α^2 +3)−ln(α^2 +1)−ln(3))/(2(2α^2 −1)))dα  −(ln((7/3))−ln(3))∫  (dα/(2(2α^2 −1))) +c....becontinued....

changeenttan(x2)=tgiveI=π2π3xdx3+cosx=1132arctan(t)3+1t21+t22dt1+t2=1134arctan(t)3+3t2+1t2dt=4113arctan(t)2t2+4dt=2113arctan(t)t2+2dtletf(α)=113arctan(αt)t2+2dtwithα>0f(α)=113t(α2t2+1)(t2+2)dtletdecomposeF(t)=t(α2t2+1)(t2+2)F(t)=at+bα2t2+1+ct+dt2+2F(t)=F(t)b=d=0F(t)=atα2t2+1+ctt2+2limt+tF(t)=0=aα2+cc=aα2F(t)=atα2t2+1atα2(t2+2)F(1)=13(α2+1)=aα2+1a3α213=aa3α2(α2+1)1=3aa(α2+1)α2=(3α2α21)aα2(2α21)a=α2a=α22α21F(t)=α2t(2α21)(α2t2+1)t(2α21)(t2+2)f(α)=12(2α21)1132α2tα2t2+1dt12(2α21)1132tdtt2+2=12(2α21)[ln(α2t2+1)]11312(2α21)[ln(t2+2)]113=12(2α21){ln(α23+1)ln(α2+1)}12(2α21){ln(13+2)ln(3)}f(α)=ln(α2+3)ln(α2+1)ln(3)2(2α21)dα(ln(73)ln(3))dα2(2α21)+c....becontinued....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com