Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 40142 by maxmathsup by imad last updated on 16/Jul/18

calculate    ∫_(−(π/6)) ^(π/6)    ((1+tan(x))/(1+sin(2x)))dx

calculateπ6π61+tan(x)1+sin(2x)dx

Commented by maxmathsup by imad last updated on 19/Jul/18

let  I = ∫_(−(π/6)) ^(π/6)   ((1+tan(x))/(1+sin(2x)))dx changement tanx =t give  I = ∫_(−(1/(√3))) ^(1/(√3))    ((1+t)/(1+((2t)/(1+t^2 )))) (dt/(1+t^2 )) = ∫_(−(1/(√3))) ^(1/(√3))    ((1+t)/(1+t^2  +2t)) dt  = ∫_(−(1/(√3))) ^(1/(√3))    ((t+1)/((t+1)^2 ))dt = ∫_(−(1/(√3))) ^(1/(√3))     (dt/(t+1)) =[ln∣t+1∣]_(−(1/(√3))) ^(1/(√3))   =ln(1+(1/(√3)))−ln(1−(1/(√3)))=ln((√3)+1)−ln((√3)) −ln((√3)−1) +ln((√3))  I=ln((√3) +1) −ln((√3)−1)

letI=π6π61+tan(x)1+sin(2x)dxchangementtanx=tgiveI=13131+t1+2t1+t2dt1+t2=13131+t1+t2+2tdt=1313t+1(t+1)2dt=1313dtt+1=[lnt+1]1313=ln(1+13)ln(113)=ln(3+1)ln(3)ln(31)+ln(3)I=ln(3+1)ln(31)

Answered by tanmay.chaudhury50@gmail.com last updated on 17/Jul/18

t=tanx   dt=sec^2 x dx  ∫_(−(1/(√3))) ^(1/((√3) ))  (((1+t)(1+t^2 )(1+t^2 )dt)/(1+t^2 +2t))  ∫_(−(1/(√3))) ^(1/(√3))  ((t^4 +2t^2 +1)/(t+1))dt  ∫_((−1)/(√3)) ^(1/((√3) )) ((t^4 +t^3 −t^3 −t^2 +3t^2 +3t−3t−3+4)/(t+1))  ∫_((−1)/(√3)) ^(1/((√3) ))  t^3 −t^2 +3t−3+(4/(t+1)) dt  =∣(t^4 /4)−(t^3 /3)+3(t^2 /2)−3t+4ln(t+1)∣_((−1)/(√3)) ^(1/(√3))   =−(1/3)((2/(3(√3))))−3((2/(√3)))+4ln((((1/(√3))+1)/(((−1)/(√3))+1)))  =((−2)/(9(√3)))−(6/(√3))+4ln((((√3) +1)/((√3) −1)))      0

t=tanxdt=sec2xdx1313(1+t)(1+t2)(1+t2)dt1+t2+2t1313t4+2t2+1t+1dt1313t4+t3t3t2+3t2+3t3t3+4t+11313t3t2+3t3+4t+1dt=∣t44t33+3t223t+4ln(t+1)1313=13(233)3(23)+4ln(13+113+1)=29363+4ln(3+131)0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com