Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 65924 by mathmax by abdo last updated on 05/Aug/19

calculate ∫_(−(π/6)) ^(π/6)  (x/(sinx))dx

calculateπ6π6xsinxdx

Commented by mathmax by abdo last updated on 07/Aug/19

let I =∫_(−(π/6)) ^(π/6)  (x/(sinx))dx  let find approximate value we have  I =2∫_0 ^(π/6)  (x/(sinx))dx     but sinx =Σ_(n=0) ^∞  (((−1)^n x^(2n+1) )/((2n+1)!)) with radiusR=+∞  ⇒sinx =x−(x^3 /(3!)) +(x^5 /(5!))−....⇒x−(x^3 /(3!))≤sinx ≤x ⇒(1/x)≤(1/(sinx))≤(1/(x−(x^3 /6)))  ⇒1≤(x/(sinx))≤(1/(1−(x^2 /6)))   for x∈]0,(π/6)] ⇒∫_0 ^(π/6) 1dx ≤∫_0 ^(π/6)  (x/(sinx))dx≤∫_0 ^(π/6)  ((6dx)/(6−x^2 ))  (π/3)≤ 2∫_0 ^(π/6)   (x/(sinx))dx ≤12 ∫_0 ^(π/6)  (dx/(6−x^2 )) ⇒(π/3)≤I ≤12∫_0 ^(π/6)  (dx/(6−x^2 ))  ∫_0 ^(π/6)  (dx/(6−x^2 )) =−∫_0 ^(π/6)   (dx/((x−(√6))(x+(√6)))) =−(1/(2(√6)))∫_0 ^(π/6)   {(1/(x−(√6)))−(1/(x+(√6)))}dx  =−(1/(2(√6)))[ln∣((x−(√6))/(x+(√6)))∣]_0 ^(π/6)  =−(1/(2(√6)))ln∣(((π/6)−(√6))/((π/6)+(√6)))∣  =−(1/(2(√6)))ln∣((π−6(√6))/(π+6(√6)))∣ =(1/(2(√6)))ln(((π+6(√6))/(6(√6)−π))) ⇒(π/3)≤ I ≤(√6)ln(((6(√6)+π)/(6(√6)−π)))  let v_0 =(π/6) +((√6)/2)ln(((6(√6)+π)/(6(√6)−π)))  v_0 is a better approximation for I .

letI=π6π6xsinxdxletfindapproximatevaluewehaveI=20π6xsinxdxbutsinx=n=0(1)nx2n+1(2n+1)!withradiusR=+sinx=xx33!+x55!....xx33!sinxx1x1sinx1xx361xsinx11x26forx]0,π6]0π61dx0π6xsinxdx0π66dx6x2π320π6xsinxdx120π6dx6x2π3I120π6dx6x20π6dx6x2=0π6dx(x6)(x+6)=1260π6{1x61x+6}dx=126[lnx6x+6]0π6=126lnπ66π6+6=126lnπ66π+66=126ln(π+6666π)π3I6ln(66+π66π)letv0=π6+62ln(66+π66π)v0isabetterapproximationforI.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com