All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 65924 by mathmax by abdo last updated on 05/Aug/19
calculate∫−π6π6xsinxdx
Commented by mathmax by abdo last updated on 07/Aug/19
letI=∫−π6π6xsinxdxletfindapproximatevaluewehaveI=2∫0π6xsinxdxbutsinx=∑n=0∞(−1)nx2n+1(2n+1)!withradiusR=+∞⇒sinx=x−x33!+x55!−....⇒x−x33!⩽sinx⩽x⇒1x⩽1sinx⩽1x−x36⇒1⩽xsinx⩽11−x26forx∈]0,π6]⇒∫0π61dx⩽∫0π6xsinxdx⩽∫0π66dx6−x2π3⩽2∫0π6xsinxdx⩽12∫0π6dx6−x2⇒π3⩽I⩽12∫0π6dx6−x2∫0π6dx6−x2=−∫0π6dx(x−6)(x+6)=−126∫0π6{1x−6−1x+6}dx=−126[ln∣x−6x+6∣]0π6=−126ln∣π6−6π6+6∣=−126ln∣π−66π+66∣=126ln(π+6666−π)⇒π3⩽I⩽6ln(66+π66−π)letv0=π6+62ln(66+π66−π)v0isabetterapproximationforI.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com