All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 36427 by prof Abdo imad last updated on 02/Jun/18
calculate∫π8π6dxsin(2x)
Commented by abdo mathsup 649 cc last updated on 03/Jun/18
I=2x=u∫π4π31sin(u)du2=12∫π4π3dusinuandchangementtan(u2)=xgiveI=12∫2−11312x1+x22dx1+x2=12∫2−113dxx=12[ln∣x∣]2−113=12{−ln(3)−ln(2−1)=−12{12ln(3)+ln(2−1)}.
Answered by tanmay.chaudhury50@gmail.com last updated on 02/Jun/18
∫Π8Π61+tan2x2tanxdx12∣ln(tanx)∣Π8Π6=12{lntanΠ6−lntanΠ8)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com