Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 36427 by prof Abdo imad last updated on 02/Jun/18

calculate ∫_(π/8) ^(π/6)    (dx/(sin(2x)))

calculateπ8π6dxsin(2x)

Commented by abdo mathsup 649 cc last updated on 03/Jun/18

I  =_(2x =u)   ∫_(π/4) ^(π/3)       (1/(sin(u))) (du/2)  = (1/2) ∫_(π/4) ^(π/3)    (du/(sinu))  and changement tan((u/2))=x give  I  = (1/2) ∫_((√2) −1) ^(1/(√3))    (1/((2x)/(1+x^2 )))  ((2dx)/(1+x^2 )) = (1/2) ∫_((√2)−1) ^(1/(√3))   (dx/x)  =(1/2)[ln ∣x∣]_((√2) −1) ^(1/(√3))   = (1/2){ −ln((√3)) −ln((√2) −1)  =−(1/2){ (1/2)ln(3) +ln((√2) −1)} .

I=2x=uπ4π31sin(u)du2=12π4π3dusinuandchangementtan(u2)=xgiveI=12211312x1+x22dx1+x2=122113dxx=12[lnx]2113=12{ln(3)ln(21)=12{12ln(3)+ln(21)}.

Answered by tanmay.chaudhury50@gmail.com last updated on 02/Jun/18

∫_(Π/8) ^(Π/6)  ((1+tan^2 x)/(2tanx))dx  (1/2)∣ln(tanx)∣_(Π/8) ^(Π/6)   =(1/2){lntan(Π/6)−lntan(Π/8))

Π8Π61+tan2x2tanxdx12ln(tanx)Π8Π6=12{lntanΠ6lntanΠ8)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com