Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 22843 by gourav~ last updated on 22/Oct/17

calculate the value of  ∫_0 ^(1000) e^(x−[x]) dx =?  where.... [x] is greatest integer functon

calculatethevalueof01000ex[x]dx=?where....[x]isgreatestintegerfuncton

Answered by ajfour last updated on 23/Oct/17

let I=∫_0 ^(  1000) e^(x−[x]) dx    =Σ_0 ^(999) ∫_m ^(  m+1) e^(x−[x]) dx  let x−[x]={x}       ⇒  dx=d{x} for each interval  so  I=Σ_0 ^(999) ∫_0 ^(  1) e^({x}) d{x}=1000(e−1) .

letI=01000ex[x]dx=9990mm+1ex[x]dxletx[x]={x}dx=d{x}foreachintervalsoI=999001e{x}d{x}=1000(e1).

Commented by gourav~ last updated on 23/Oct/17

yes sir... but how

yessir...buthow

Commented by jota+ last updated on 03/Dec/17

m≤x<m+1 ⇒ x−[x]=x−m=u  then  x=m+u              ∫_m ^(m+1) dx → ∫_0 ^1 du

mx<m+1x[x]=xm=uthenx=m+umm+1dx01du

Terms of Service

Privacy Policy

Contact: info@tinkutara.com