All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 74886 by abdomathmax last updated on 03/Dec/19
calculate∫x+1(x3+x−2)2dx
Commented by mathmax by abdo last updated on 15/Dec/19
letI=∫x+1(x3+x−2)2dxletdecomposeF(x)=x+1(x3+x−2)2wehavex3+x−2=x3−1+x−1=(x−1)(x2+x+1)+x−1=(x−1)(x2+x+2)⇒F(x)=x+1(x−1)2(x2+x+2)2=ax−1+b(x−1)2+cx+dx2+x+2+ex+f(x2+x+2)2b=(x−1)2F(x)∣x=1=242=18limx→+∞xF(x)=0=a+c⇒c=−a⇒F(x)=ax−1+18(x−1)2+−ax+dx2+x+2+ex+f(x2+x+2)2F(0)=14=−a+18+d2+f4⇒1=−4a+12+2d+f⇒−4a+2d+f=12F(2)=364=a+18+−2a+d8+2e+f64⇒3=64a+8+8(−2a+d)+2e+f⇒3=48a+8+8d+2e+f⇒⇒48a+8d+2e+f=−5weformasystemwith4equationwithunknowna,d,eandftogetthevalueanywaywegetI=aln∣x−1∣−18(x−1)+∫−ax+dx2)x+2dx+∫ex+f(x2+x+2)2...becontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com