All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 63023 by mathmax by abdo last updated on 27/Jun/19
calculate∫−∞+∞x2−3x4+x2+1dx.
Commented by mathmax by abdo last updated on 28/Jun/19
letA=∫−∞+∞x2−3x4+x2+1dxletW(z)=z2−3z4+z2+1polesofW?z4+z2+1=0→t2+t+1=0(withz2=t)→Δ=1−4=(i3)2⇒t1=−1+i32andt2=−1−i32⇒t1=ei2π3andt2=e−i2π3⇒z4+z2+1=(t−t1)(t−t2)=(z2−ei2π3)(z2−e−i2π3)=(z−eiπ3)(z+eiπ3)(z−e−iπ3)(z+eiπ3)⇒W(z)=z2−3(z−eiπ3)(z+eiπ3)(z−e−iπ3)(z+e−iπ3)=z2−3(z2−ei2π3)(z2−e−i2π3)thepolesofWare+−eiπ3and+−e−iπ3residustheoremgive∫−∞+∞W(z)dz=2iπ{Res(W,eiπ3)+Res(W,−e−iπ3)}Res(W,eiπ3)=limz→eiπ3(z−eiπ3)W(z)=ei2π3−32eiπ3(e2iπ3−e−i2π3)=12e−iπ3ei2π3−32isin(2π3)=14i32(eiπ3−3e−iπ3)=12i3{eiπ3−3e−iπ3}Res(W,−e−iπ3)=limz→−e−iπ3(z+e−iπ3)W(z)=e−2iπ3−3(e−2iπ3−ei2π3)(−2e−iπ3)=eiπ32(2isin(2π3)){e−2iπ3−3}=14i32{e−iπ3−3eiπ3}=12i3{e−iπ3−3eiπ3}⇒∫−∞+∞W(z)dz=2iπ12i3{eiπ3−3e−iπ3+e−iπ3−3eiπ3}=π3{−2eiπ3−2e−iπ3}=−2π3{eiπ3+e−iπ3}=−2π3{2cos(π3)}=−2π3212=−2π3⇒∫−∞+∞x2−3x4+x2+1dx=−2π3.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com