Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 63023 by mathmax by abdo last updated on 27/Jun/19

calculate ∫_(−∞) ^(+∞)    ((x^2 −3)/(x^4  +x^2  +1))dx .

calculate+x23x4+x2+1dx.

Commented by mathmax by abdo last updated on 28/Jun/19

let A =∫_(−∞) ^(+∞)  ((x^2 −3)/(x^4  +x^2  +1))dx let W(z) =((z^2 −3)/(z^4  +z^2  +1))  poles of W?  z^4  +z^2  +1 =0 →t^2  +t +1 =0( with z^2  =t) →  Δ =1−4 =(i(√3))^2  ⇒t_1 =((−1+i(√3))/2)  and t_2 =((−1−i(√3))/2) ⇒  t_1 =e^((i2π)/3)  and t_2 =e^(−((i2π)/3))  ⇒z^4  +z^2  +1 =(t−t_1 )(t−t_2 ) =(z^2 −e^((i2π)/3) )(z^2 −e^(−((i2π)/3)) )  =(z−e^(i(π/3)) )(z+e^((iπ)/3) )(z−e^(−((iπ)/3)) )(z +e^((iπ)/3) )⇒W(z) =((z^2 −3)/((z−e^((iπ)/3) )(z+e^((iπ)/3) )(z−e^(−((iπ)/3)) )(z+e^(−((iπ)/3)) )))  =((z^2 −3)/((z^2 −e^((i2π)/3) )(z^2 −e^(−((i2π)/3)) )))  the poles of  W are +^−  e^((iπ)/3)  and  +^−  e^(−((iπ)/3))     residus theorem give  ∫_(−∞) ^(+∞)  W(z)dz =2iπ { Res(W,e^((iπ)/3) ) +Res(W,−e^(−((iπ)/3)) )}  Res(W,e^((iπ)/3) ) =lim_(z→e^((iπ)/3) )   (z−e^((iπ)/3) )W(z) =((e^(i((2π)/3)) −3)/(2e^((iπ)/3) (e^((2iπ)/3)  −e^(−((i2π)/3)) ))) =(1/2) e^(−((iπ)/3))   ((e^(i((2π)/3)) −3)/(2isin(((2π)/3))))  =(1/(4i((√3)/2))) (e^((iπ)/3)  −3 e^(−((iπ)/3)) ) =(1/(2i(√3))){ e^((iπ)/3)  −3 e^(−((iπ)/3)) }  Res(W,−e^(−((iπ)/3)) ) =lim_(z→−e^(−((iπ)/3)) )     (z+e^(−((iπ)/3)) )W(z) =((e^(−((2iπ)/3)) −3)/((e^(−((2iπ)/3))  −e^((i2π)/3) )(−2e^(−((iπ)/3)) )))  =(e^((iπ)/3) /(2(2i sin(((2π)/3))))){ e^(−((2iπ)/3)) −3} =(1/(4i ((√3)/2))){ e^(−((iπ)/3))  −3 e^((iπ)/3) }  =(1/(2i(√3))){  e^(−((iπ)/3))  −3 e^((iπ)/3) } ⇒  ∫_(−∞) ^(+∞)  W(z)dz =2iπ (1/(2i(√3))){  e^((iπ)/3)  −3 e^(−((iπ)/3))  +e^(−((iπ)/3))  −3 e^((iπ)/3) }  =(π/(√3)){ −2 e^((iπ)/3) −2 e^(−((iπ)/3)) } =((−2π)/(√3)){  e^((iπ)/3)  +e^(−((iπ)/3)) } =((−2π)/(√3)){ 2cos((π/3))} =((−2π)/(√3))2(1/2)  =((−2π)/(√3)) ⇒ ∫_(−∞) ^(+∞)   ((x^2 −3)/(x^4  +x^2  +1))dx =((−2π)/(√3)) .

letA=+x23x4+x2+1dxletW(z)=z23z4+z2+1polesofW?z4+z2+1=0t2+t+1=0(withz2=t)Δ=14=(i3)2t1=1+i32andt2=1i32t1=ei2π3andt2=ei2π3z4+z2+1=(tt1)(tt2)=(z2ei2π3)(z2ei2π3)=(zeiπ3)(z+eiπ3)(zeiπ3)(z+eiπ3)W(z)=z23(zeiπ3)(z+eiπ3)(zeiπ3)(z+eiπ3)=z23(z2ei2π3)(z2ei2π3)thepolesofWare+eiπ3and+eiπ3residustheoremgive+W(z)dz=2iπ{Res(W,eiπ3)+Res(W,eiπ3)}Res(W,eiπ3)=limzeiπ3(zeiπ3)W(z)=ei2π332eiπ3(e2iπ3ei2π3)=12eiπ3ei2π332isin(2π3)=14i32(eiπ33eiπ3)=12i3{eiπ33eiπ3}Res(W,eiπ3)=limzeiπ3(z+eiπ3)W(z)=e2iπ33(e2iπ3ei2π3)(2eiπ3)=eiπ32(2isin(2π3)){e2iπ33}=14i32{eiπ33eiπ3}=12i3{eiπ33eiπ3}+W(z)dz=2iπ12i3{eiπ33eiπ3+eiπ33eiπ3}=π3{2eiπ32eiπ3}=2π3{eiπ3+eiπ3}=2π3{2cos(π3)}=2π3212=2π3+x23x4+x2+1dx=2π3.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com